Сферы применения аддитивных технологий. Аддитивная технология - будущее, которое наступает Аддитивные технологии 3d оборудование в авиастроении

08.06.2016

Перспективы применения аддитивных технологий при производстве дорожно-строительных машин

Основными направлениями развития машиностроения в настоящее время являются: применение новых полимерных, композиционных, интеллектуальных материалов при производстве деталей машин; разработка новых технологических методов, оборудования и процессов производства изделий машиностроения.

Первым шагом на пути создания машины является пространственное проектирование изделий машиностроения с применением компьютерных виртуальных цифровых трехмерных моделей, что стало возможно благодаря внедрению современного программного обеспечения (CAD-программы), моделирования и расчетов (CAE).

Внедрение технологий «трехмерной печати» (3D-печать) обеспечивает возможность создания детали машины или изделия в целом на основе разработанной 3D-модели в кратчайшие сроки и с минимальными потерями материалов. Методы изготовления изделий, основанные на процессе объединения материала с целью создания объекта из данных 3D-модели, получили обобщающее название «аддитивные технологии» (additive).

В этом контексте традиционные машиностроительные технологии, основанные на механической обработке заготовки, при которой происходит удаление части материала (точение, фрезерование), являются «отнимающими» (subtractive).

В основе современных аддитивных технологий лежит метод формирования детали из полимерного композиционного материала путем постепенного наращивания с помощью термического или какого-либо иного воздействия, в результате которого получается деталь необходимой формы с заданными размерами. В настоящее время существует уже более 30 различных типов аддитивных технологических процессов.

Основными преимуществами аддитивных технологий перед традиционными являются:

Сокращение трудоемкости изготовления;
сокращение сроков проектирования и изготовления детали;
снижение себестоимости проектирования и изготовления детали;
экономия машиностроительных материалов. Время возникновения аддитивных
технологий относится к концу 80-х годов прошлого века. Пионером в этой области является компания 3D Systems (США).

Первая классификация аддитивных технологических методов производства деталей была приведена в стандарте ASTM F2792.1549323-1 (США), в значительной степени устаревшая за последние двадцать лет в связи с бурным развитием технологического оборудования.

1 сентября 2015 года приказом Рос-стандарта создан технический комитет «Аддитивные технологии» для разработки терминов, определений и стандартов, относящихся к ним.

Разработка классификации аддитивных технологий с учетом разнообразия применяемых методов, материалов и оборудования является непростой задачей.

Во-первых, следует выделить два направления развития аддитивных технологий по принципу формирования детали

Направления развития аддитивных технологий по принципу формирования детали

Первое направление предусматривает формирование детали путем объединения материала, распределенного на рабочей поверхности платформы технологического оборудования (Bed deposition). После окончания процесса изготовления остается некоторый объём материала, который может использоваться для формирования следующей детали.

Процессы объединения материала, распределенного на платформе, заложены в основу различных видов технологического оборудования для производства деталей методами аддитивных технологий:

SLA – Steriolithography Apparatus;
SLM – Selective Laser Melting;
DMLS – Direct metal laser sintering;
EBM – Electron Beam Melting;
SHS – Selective Heat Sintering;
MIM – Metal Injection Molding;
Ink-Jet или Binder jetting;
UAM – Ultrasonic additive manufacturing;
LOM – Laminated Object Manufacturing.

Второе направление формирования деталей – путем прямого осаждения материала (Direct deposition). В этом случае изделие формируется послойно непосредственно из разогретого до необходимой температуры материала, поступающего на рабочую платформу из специального распределяющего устройства.

На принципе прямого осаждения материала построены следующие виды технологического оборудования для производства деталей методами аддитивных технологий:

CLAD – Construction Laser Additive Di-recte;
EBDM – Electron beam Direct Manufacturing;
MJS – Multiphase Jet Solidification;
BPM – Ballistic particle manufacturing;
MJM – Multi jetting Material.

Классификация аддитивных технологий по агрегатному состоянию материала, используемого при формировании
детали

Классификация аддитивных технологий по агрегатному состоянию материала, используемого при формировании детали

Классификация аддитивных технологий по виду используемого материала

Классификация аддитивных технологий по виду используемого материала

В зависимости от вида и исходной формы материала, используемого для изготовления деталей, различают виды аддитивных технологий

Классификация аддитивных технологий по виду и форме материала, используемого для изготовления деталей

Фидсток (Feedstock) – международное название гранулированной смеси порошка и связующего материала.

Очевидно, что для производства исходных материалов, используемых при формировании деталей с помощью аддитивных технологий, применяются различные виды специального технологического оборудования, перечисление и описание которых не предусмотрено рамками данной статьи.

Процесс создания изделия с применением аддитивных технологий можно представить в виде последовательности действий

Структура аддитивного технологического процесса производства изделий машиностроения

В соответствии с представленным на рис. 5 алгоритмом на первом этапе создания изделия осуществляется разработка 3D-модели с использованием CAD-программы в соответствии с техническим заданием и требованиями стандартов.

После этого необходимо экспортировать данные файла программы твердотельного моделирования в формат, воспринимаемый программой управляющей машины аддитивного производства (например, «STL»).
Перед следующим этапом проводится выявление возможных дефектов модели. Модель, предназначенная для 3D-печати, должна быть герметичной, монолитной и не содержать полых стенок, что обеспечивается с помощью специальных программ.

Далее осуществляется преобразование информации из STL-файла в команды, следуя которым 3D-принтер производит изделие, это так называемый G-код. Во время этой процедуры следует выбрать нужный масштаб детали, правильное положение в пространстве, а также точно позиционировать модель на рабочей поверхности. От этого зависит результат всего процесса, прочность, шероховатость поверхности детали и расход материала.

После выполнения настроек происходит разделение модели на слои материала, «укладываемые» в тело детали за один рабочий цикл аддитивной машины. Этот процесс получил название нарезка (slicing – англ.). Нарезка производится с помощью программного обеспечения, поставляемого с машиной, или с помощью специальных средств (Skein-forge, Slic3r, KISSlicer, MakerWare и др.).

Полученный на предыдущей стадии G-код передается на 3D-принтер через флеш-память или через USB-кабель.
В процессе подготовки и настройки аддитивной машины выполняются калибровка, предварительный нагрев рабочих органов, выбор модельного материала и задание зависящих от него параметров режимов работы оборудования.

На устройствах профессионального уровня этот этап может быть совмещен с процедурами процесса нарезки.

После того как выполнены все подготовительные операции, запускается процесс печати, то есть послойного объединения материалов. Его продолжи тельность зависит от типа технологии и выбранных параметров точности и качества изготовления детали.

Созданную деталь при необходимости подвергают дополнительным технологическим воздействиям: удаление поддерживающих опор, химическая или термическая обработка, финишная доводка рабочих поверхностей.
На заключительной стадии производства проводится контроль качества изготовления детали, включающий проверку соответствия нормативным требованиям геометрических размеров, показателей физико-механических свойств и других параметров, влияющих на потребительские свойства изделия.

Для строительных и транспортно-технологических машин перспективы применения аддитивных технологий в первую очередь очевидны при производстве следующих видов деталей:

Пластиковые корпусные детали электрических приборов;
комплектующие гидравлического оборудования (уплотнения направляющих поршней и поршни гидроцилиндров, разъемные соединения, элементы распределителей, насосов и гидромоторов);
изготовление патрубков систем охлаждения и питания двигателя;
детали отделки кабины оператора: рукояти рычагов, панели, переключатели, джойстики и др.;
корпусные, предохранительные, шарнирные и другие детали навесного рабочего оборудования;
втулки шарниров подвижных соединений, работающие в качестве подшипника скольжения рабочего оборудования.

Особый интерес представляет возможность применения аддитивных технологий для быстрого прототипирования при разработке рабочего оборудования строительных машин.

Разработка прототипа (макета) рабочего органа является важнейшим этапом создания машины. Прототип готового изделия не только дает представление о его внешнем виде и габаритно-массовых характеристиках, но также позволяет провести оценку соответствия достигнутых эксплуатационных свойств требованиям технического задания.

Рассмотрим процедуру прототипирования с применением аддитивных технологий на примере ковша экскаватора.
Быстрое прототипирование при проектировании новых модификаций ковшей обеспечивает:

Визуализацию внешнего вида ковша;
подтверждение совместимости кинематических параметров с базовой машиной;
возможность оценки заполнения ковша грунтом и его последующей разгрузки, что играет немаловажную роль при разработке грунтов, обладающих высокой липкостью или примерзаемостью;
возможность изучения процесса стружкообразования при резании грунта ковшом;
выявление зон, подверженных наибольшему абразивному износу при работе;
проработку технологических процессов сборки, сварки, механической обработки и покраски;
обучение сотрудников. Широкие возможности предоставляет
разнообразие типов и свойств модельных материалов, применяемых для прототипирования. Например, модель, созданная из прозрачного полимера, позволяет исследовать не только взаимодействие поверхностей рабочего органа экскаватора с грунтом при заполнении, но также и процессы, происходящие в разрабатываемом грунте. Это позволяет подобрать оптимальную форму ковша, обеспечивающую наименьшие сопротивление при копании грунта.


Цифровая модель прототипа ковша эксковатора

Анализ модели с помощью метода конечных элементов позволяет оценить распределение напряжений, возникающих в конструкции в процессе копания


Распределение внутренних напряжений в конструкции ковша экскаватора в процессе разработки грунта

Создание и испытание прототипа ковша обеспечивает:

Экономию средств на натурные испытания;
предотвращение ошибок при проектировании и сборке изделия;
снижение массы ковша;
повышение эффективности разработки грунта ковшом, что, в свою очередь, обеспечивает снижение расхода топлива;
повышение безотказности и долговечности рабочего оборудования;
возможность оценки срока службы ковша и интенсивности изнашивания зубьев в процессе разработки грунтов различных категорий. Процесс создания ковша экскаватора
с применением макета состоит из следующих этапов:
разработка цифровой 3D-модели ковша, проведение расчетов с помощью специализированных программных продуктов.
изготовление прототипа с помощью аддитивных технологий: подготовка модели к прототипированию, обоснование масштаба для макета и формирование ковша из термопластичного материала.
проведение испытаний и экспериментальных исследований прототипа ковша.
обработка и анализ результатов исследований, внесение необходимых изменений в конструкцию ковша, доработка конструкторской документации, согласование и начало производства.


Ковш экскаватора, изготовленный с учетом результатов исследований прототипа

При ремонте транспортно-технологических машин возможно использование аддитивных технологий для восстановления изношенных и поврежденных металлических деталей методами LENS, CLAD, DMD, что позволяет минимизировать применение ручного труда, повысить производительность и качество ремонта.

А вот изготовление деталей из полимерных материалов для ремонта может быть полезно следующим:

Взамен металлических – мера, снижающая простой техники из-за внезапного
отказа (временная замена). Что особенно актуально в компаниях, не проводящих мероприятия ППР. Для малого бизнеса, эксплуатирующего несколько единиц машин различного назначения, бюджет которого не позволяет содержать сотрудников для закупок запчастей или иметь запас деталей для замены;
вместо пластиковых позволит печатать детали индивидуального ремонтного размера;
применение композитных материалов по свойствам, превосходящим параметры исходной детали;
производство малого количества деталей в электротехнике и гидроприводе;
мобильность принтеров: возможно размещение в автомобиле;
относительно низкое энергопотребление.

Немаловажным фактором является и то, что при аддитивном производстве и восстановлении деталей разработчик может находиться на любом удалении от объекта (машины) благодаря широкому использованию компьютерных сетей.

Сканирование поврежденных комплектующих сборочных единиц при помощи 3D-сканера (реинжиниринг) с последующей компьютерной обработкой и печатью открывает перспективы создания универсальных многофункциональных производственно-ремонтных комплексов.
Сканирование существенно увеличивает скорость и точность производства детали, а также снижает расходы на измерительный инструмент. В настоящее время 3D-сканер уже применяется при проведении контроля качества изготовленных деталей на передовых предприятиях.

На сегодняшний день основными проблемами, сдерживающими внедрение аддитивных технологий в производство, являются ограниченный выбор используемых материалов и их высокая стоимость, ограниченность габаритных размеров создаваемых изделий и невысокая производительность оборудования. Но с учетом сложившейся динамики развития аддитивных технологий преодоление этих проблем в ближайшее время вполне реально.
Приведенные в статье результаты получены при разработке проекта № Б1124214, выполняемого в рамках проектной части Государственного задания в сфере научной деятельности за 2016 г.

Список использованной литературы
1. Слюсар, В.И. Фабрика в каждый дом. Вокруг света. — № 1 (2808).
2. Довбыш В.М., Забеднов П.В., Зленко М.А. Статья «Аддитивные технологии и изделия из металла» ГНЦ РФ ФГУП «НАМИ».
3. Зорин В.А. Баурова Н.И., Шакурова А.М. Применение капсулированных материалов при сборке и ремонте резьбовых соединений // Механизация строительства. 2014. № 8(842).
4. Зорин В.А. Баурова Н.И., Шакурова А.М. Исследование структуры капсулированного анаэробного клея // Клеи. Герметики. Технологии. 2014. № 5.
5. Баурова Н.И., Зорин В.А., Приходько В.М. Описание сценариев перехода материала из работоспособного состояния в неработоспособное с использованием уравнения теории катастроф «складка» // Клеи. Герметики. Технологии. 2014. № 8.
6. Баурова Н.И., Зорин В.А., Приходько В.М. Описание процессов деградации свойств материалов с использованием аппарата теории катастроф // Все материалы. Энциклопедический справочник. 2014. № 11.
Баурова Н.И., Сергеев А.Ю. Структурные исследования механизма разрушения клевых соединений после испытаний методом pull-out // Клеи. Герметики. Технологии. 2014. № 4.

Трехмерная печать, появившись в 1980-е годы, прошла колоссальный эволюционный путь, разделившись на два основных направления – быстрое создание моделей и аддитивное производство. Об основных вехах этого пути - .

Революционные преимущества

Детали изготавливаются непосредственно по компьютерному файлу, содержащему 3D-модель, виртуально нарезанную на тонкие слои, который передается в АП-систему, для послойного формирования конечного изделия. АП-технологии обеспечивают гибкость, позволяющую быстрое производство сложной кастомизирoванной продукции и запасных частей, которые либо не могут быть изготовлены с помощью традиционных производственных технологий, либо требуются в малых объемах. Сложная конфигурация (например, наличие в детали внутренних каналов охлаждения), которую нельзя получить станочной обработкой, может быть легко воспроизведена селективным нанесением материала.

К преимуществам цифровых моделей относится не только произвольность формы, но и возможность их моментальной передачи в любую точку мира, что позволяет организовать локальное производство в мировых масштабах. Еще одной важной особенностью технологий АП является близость получаемой формы изделия к заданной, что существенно сокращает расходы материала и отходы производства.

Совместное исследование European Aeronautic Defense and Space Company (Бристоль, ) и EOS Innovation Center (Уорвик, Великобритания) показало, что экономия сырья при АП может достигать 75%. Благодаря всем этим качествам АП, в сравнении с традиционными производственными технологиями, обладает значительным потенциалом в том, что касается сокращения затрат, энергосбережения и снижения вредных выбросов в атмосферу.

Уникальные возможности АП обеспечивают следующие преимущества:

  • сокращение сроков и стоимости запуска изделия в производство благодаря отсутствию необходимости в специализированной инструментальной оснастке;
  • возможность и экономическая целесообразность мелкосерийного производства;
  • оперативные изменения в проекте на этапе производства;
  • функциональная оптимизация продукции (например, реализация оптимальной формы каналов охлаждения);
  • экономическая целесообразность производства кастомизированной продукции;
  • сокращение потерь и отходов производства;
  • возможности для упрощения логистики, сокращения времени поставок, уменьшения объемов складских запасов;
  • персонализация дизайна.

Рынок аддитивных технологий

2018: Frost & Sullivan прогнозирует рост рынка до $21,5 млрд к 2025 году

Обзор мирового рынка

Ежегодные темпы роста мирового рынка аддитивных технологий составляют 15%. При сохранении CAGR на таком уровне Frost & Sullivan прогнозирует увеличение объема рынка с $5,31 млрд в 2018 году до $21,5 млрд в 2025 году. По мнению аналитиков, к тому времени до 51% рынка будет приходиться на авиационную промышленность, сферу здравоохранения и автомобилестроение. Отрасли, в которых в 2025 году будет наиболее заметно использование технологий аддитивного производства, показаны на рис. 1:


Страны Северной Америки были и, по данным за 2018 года, остаются крупнейшим потребителем аддитивных технологий в мире. В 2015 году объем североамериканского рынка оценивался $2,35 млрд с перспективой роста до $7,65 млрд к 2025 году. Второй по величине - это рынок стран Европы и Ближнего Востока. В 2015 году его суммарный объем составлял $1,81 млрд, а к 2025 году он может увеличиться до $7,18 млрд.

Одним из самых быстро растущих является рынок Азиатско-Тихоокеанского региона. В период 2015-2025 гг. ежегодные темпы роста составят 18,6%, а объем увеличится более чем в 5 раз - с $1,01 млрд в 2015 до $5,56 млрд в 2025 году. При этом на долю Китая будет приходится порядка 70%, считают в Frost & Sullivan.


В странах Северной Америки технологии 3D-печати активно внедряются в аэрокосмической, оборонной и автомобильной отраслях. В последние годы резко увеличилось количество стартап-проектов как в этих, так и других сферах.

Внедрение аддитивных технологий в Европе и на Ближнем Востоке происходит медленнее, чем в странах Северной Америки. Основной фокус здесь делается на использование 3D-печати на основе лазерных технологий в судостроительной отрасли и в промышленности. В то же время в последние годы отмечается рост инвестиций в технологии 3D-печати со стороны автомобилестроительных компаний.

По информации Frost & Sullivan, с точки зрения вклада в общий рынок аддитивных технологий, Россия пока сильно отстает от стран-технологических лидеров. Причем отставание отмечается по всем основным направлениям - производство оборудования для 3D-печати, масштабы применения технологий в ключевых промышленных отраслях, производство сырья и вспомогательных материалов и т.д. По состоянию на февраль 2018 года, доля России в структуре мирового рынка аддитивного производства составляет около 1%.

Потребности России в металлических порошках для 3D-принтеров, а также оборудовании закрываются преимущественно за счет импорта продукции. Основные объемы поставок сырья приходятся на Германию и Великобританию .

Среди крупнейших потребителей порошковых материалов на российском рынке в Frost & Sullivan назвали такие предприятия, как «Авиадвигатель» и НПО «Сатурн» (в обоих случаях - разработка газотурбинных технологий и двигателей), а также «Новомет-Пермь » (производство погружных электроцентробежных насосов для добычи нефти). Значительную работу по развитию и продвижению аддитивных технологий проводят госкорпорации «Росатом » и «Роскосмос ».

По мнению аналитиков, стимулирование разработок в области аддитивного производства в России необходимо поддерживать как с помощью государственного субсидирования (компенсации затрат предприятий на производство и НИОКР), так и за счет прямых инвестиций. Одним из крупнейших игроков, оказывающих финансовую поддержку проектам в сфере аддитивных технологий, является Фонд развития промышленности , выдающий компаниям льготные займы.

Прогнозы развития

  • Применение гранул и порошковых материалов в 3D-печати позволит отказаться от использования треугольных и цилиндрических форм при изготовлении изделий;
  • Применение углеродистого (графитового) волокна и металлопорошков позволит улучшить механические, химические и термические характеристики изделий (в частности, для нефтегазовой и оборонной отраслей);
  • Производители систем компьютерного проектирования и моделирования (CAD , CAE) ведут разработки решений для 3D-печати, которые позволят снизить погрешность при изготовлении изделий и повысить точность производства;
  • Оптимизация характеристик и развитие аддитивных технологий позволит повысить точность, скорость и качество 3D-печати. К 2020 году скорость работы 3D-принтеров увеличится вдвое;
  • Одним из ключевых направлений развития сервисных услуг на рынке 3D-печати станет лизинг 3D-принтеров ;
  • Развитие получит производство 3D-принтеров, позволяющих создавать крупногабаритные изделия с высокой точностью;
  • Материал «графен», известный своими физическими и электрическими свойствами, будет применяться для производства металлических жил (волокон) и элементов питания.

2016: Топ-5 изготовителей систем АП

В число ведущих изготовителей систем АП на 2016 г входят:

  • ExOne (США),
  • Stratasys (Израиль),
  • Voxejet (Германия).

По числу смонтированных систем на 2016 г. с большим отрывом лидируют США, собравшие у себя 38% промышленных установок. Значительное количество установок эксплуатируется также в Японии (9,7%), Германии (9,4%) и Китае (8,7%). Доля России составляет 1,4%.

2012: Рост объема рынка на 28,6%

Консультант Терри Уолер (Terry Wohler) составляет и поддерживает наиболее полный свод знаний о технологиях АП (www.wohlerassociates.com), а также регулярно публикует отчеты, которые приобрели репутацию наиболее авторитетного источника информации о финансировании, тенденциях, возможностях, коллективных проектах, исследованиях и перспективных технологиях в этой области.

Согласно отчету Уолера, опубликованному в ноябре 2013 г., в 2012 г. общемировой сектор продукции и услуг АП показал совокупный годовой прирост 28,6%, что, в пересчете, соответствует рынку объемом $2,204 млрд. По прогнозам Уолера, к 2021 г. объем рынка АП составит более $10 млрд. Исследования McKinsey Global Institute свидетельствуют о том, что влияние АП на мировой ВВП может к 2025 г. достичь $550 млрд. в год.

Еще одним показателем, который отслеживает Уолер, является количество проданных установок АП. В 2012 г. было продано почти 8000 промышленных систем (с ценой выше $5,000). В структуре доходов, полученных от производства и услуг в области АП, доля, приходящаяся на изготовление составных частей конечной продукции, выросла практически с нуля в 2003 г. до 28% в 2012 г.

Технологии и оборудование

С середины 1990-х к 2016 г. были разработаны несколько процессов и систем АП, а возможности их применения существенно расширились и уже охватывают диапазон от быстрого прототипирования и изготовления простых физических макетов до поддержки в разработке дизайна продукции, создания литейных моделей и, в последнее время, непосредственного производства серийных изделий. В частности, GE Aviation объявил о серийном выпуске топливных форсунок для двигателя LEAP. Первые АП-системы производили изделия преимущественно из полимерных материалов (пластиков), тогда как к 2016 г. установки способны производить детали из металла. В аддитивных процессах с использованием металлов детали формируются путем последовательной послойной наплавки или спекания металлического порошка. Такая возможность привлекательна тем, что позволяет изготовление деталей точной или близкой к заданной формы без инструментальной оснастки с минимальной последующей механообработкой, либо вообще без нее. Это представляет особый интерес для авиационно-космической промышленности и биомедицины, поскольку делает возможным выпуск изделий с высокими эксплуатационными характеристиками при низких общих затратах.

На 2016 г. рынок АП-установок делится на три сегмента. Самые высокие темпы роста отмечаются для дешевых 3D-принтеров , ориентированных на создание концептуальных макетов и пригодных для эксплуатации в офисной среде.

Второй набор технологий, занимающий промежуточное положение по стоимости, предназначен для создания прототипов деталей с различной степенью точности и/или функциональности. Дешевые и средние по стоимости установки обычно ориентированы на полимерные материалы.

Установки высокого класса, составляющих третий сегмент, позволяют производство полимерных, металлических и керамических деталей; их цены варьируются от $200 000 до $2 000 000. Установки высокого класса могут быть оптимизированы в расчете на изготовление крупногабаритных деталей, достижение высокой производительности, использование нескольких материалов или с любой другой целью, что повышает стоимость системы.

Энергопотребление и влияние на окружающую среду

Исчерпывающее сравнение АП и других производственных процессов с точки зрения энергопотребления, расходования водных ресурсов, захоронения отходов и использования первичных материалов проведено к 2016 г. в рамках проекта ATKINS. Результаты проекта указывают на то, что с точки зрения влияния на окружающую среду АП имеет явные преимущества, однако энергопотребление этой технологии (13,1 кг CO2 на изделие) значительно выше показателей для технологий литья (1,9 кг CO2). Впрочем, другие исследования потребления энергии в различных процессах АП ведут к заметным расхождениям в данных, что указывает на необходимость дальнейшего, более целенаправленного изучения этой проблемы.

Аналогичным образом у технологий АП есть значительный потенциал в вопросе снижения выброса парниковых газов посредством оптимизации дизайна изделий и сокращения потерь материала. Результаты проекта ATIKINS приводят к заключению, что оптимальный дизайн должен приводить к 40%-ному снижению веса и экономии материала. Выполненный в рамках проекта анализ показывает, что снижение веса магистрального самолета на 100 кг на протяжении всего жизненного цикла влечет за собой экономию $2,5 млн на топливных расходах и сокращает выбросы углекислого газа на 1,3 млн т.

Имеется несколько отчетов по результатам исследований влияния АП на окружающую среду. Однако многие вопросы к 2016 г. остаются неразрешенными, и точная оценка экологических последствий АП требует дальнейших исследований. При этом очевидно, что наибольший потенциал в вопросах снижения влияния на окружающую среду имеют изделия, спроектированные таким образом, чтобы в полной мере задействовать уникальные возможности по снижению веса, предлагаемые технологиями АП.

Применения аддитивного производства

На 2016 г. преобладающей областью использования АП-процессов остается быстрое прототипирование. Некоторую часть приложений технологии АП составляет также быстрое изготовление инструментальной оснастки, в частности производство пресс-форм.

По мере совершенствования существующих и разработки новых, более развитых технологий АП они находят себе все более широкое применение. К 2016 г. эти технологии используются для изготовления разнообразной продукции, в том числе инструментов для формования, деталей для авиационно-космической, оборонной и автомобильной промышленности, электроники и многого другого.

Авиационно-космическая промышленность

Эта сфера проявляет острый интерес к АП-технологиям с момента их появления; возможность устранить множество ограничений на пути от проекта к производству позволяет реализовать в проекте решения, повышающие эффективность и снижающие вес деталей. Более того, по самой своей природе этот рынок требует мелкосерийного производства высококачественных деталей, поэтому избавление от инструментальной оснастки, предлагаемое АП-технологиями, приносит существенные выгоды. Сертификационные требования в этой сфере являются весьма жесткими. Тем не менее ряд систем и материалов прошел сертификацию, и на 2016 г АП-технологии используются для мелкосерийного производства деталей летательных аппаратов.

Все чаще в современной прессе и в глобальной сети можно встретить многочисленные публикации на тему аддитивных технологий, таких как например трехмерная печать(стереопечать, 3d-печать). Что же это такое? Это ни много не мало настоящая революция в производстве и изготовлении различного рода продукции: начиная от простых бытовых вещей и заканчивая сложными технологическими деталями и даже жилыми помещениями! Звучит невероятно и фантастически? Возможно, но в настоящее время технологии трехмерной печати получают все большее распространение. Аддитивные технологии полностью перекраивают всю сущность производства.

Отличие аддитивных технологий от традиционных

Чтобы уяснить ключевое отличие аддитивных технологий от привычных нам способов производства различных изделий, нужно понимать, что изготовить например какую-либо металлическую деталь – тот же болт или саморез, можно двумя принципиально различными способами. Первый способ всем нам хорошо известен – это механическая обработка: отрезание, отбивание, сверление отверстий и т.д. Берется брусок стали, из неё вытачиваются металлические прутки, на что расходуется значительное количество энергии и материала, далее из прутков вытачиваются уже готовые болты. Огромный минусы такого ставшего уже привычным способа производства очевидны – при изготовлении конечного продукта(в данном случае болта) большая часть исходного материала(стальной брусок) перемалывается в металлическую стружку, образуя огромное количество производственных отходов, да и расход материала согласитесь не самый рациональный. Есть конечно и другие классические способы изготовления, к примеру штамповка и литьё, однако и они имеют массу недостатков — например для изготовления методом литья необходимо сначала изготовить саму форму для заполнения, что достаточно дорого и требует специалистов высокой квалификации. Все это негативно сказывается на производительности. Создание форм актуально, если например заводу-изготовителю нужно выпустить большую партию продукции, а если несколько небольших? В этом случае изготовление форм ведет к большим издержкам и экономически нецелесообразно.

Теперь рассмотрим второй способ производства конечного продукта – он основан не на удалении части материала в результате механической обработки, а напротив на добавлении материала и наслаивании, в результате и получается готовая продукция. Отсюда и название – аддативные технологии(от английского слова «add» — добавлять,Additive Fabrication(AF) ,Additive Manufacturing(AM) ). Трехмерная печать не подразумевает никакого отрезания, распиливания, сверления. Происходит в буквальном смысле построение объекта c помощью машины послойного синтеза, которая вполне укладывается в название «3D Принтер». Во всяком случае условно можно сказать, что машина «печатает» продукцию. Как это происходит? Что используется в качестве материала? Это уже зависит от конкретной технологии трехмерной печати. К примеру стереолитография(Stereolithography) подразумевает использование лазера, под воздействием которого затвердевает сырье – жидкий фотополимер. Селективное лазерное спекание(Selective Laser Sintering — SLS) использует специальные порошки, частички которых соединяются под воздействием лазера, так называемая «экструзионная печать» использует разного рода пластичный материал, подающийся через сопла на поверхность, где воспроизводится продукт. Технологию действительно можно сравнить с классической печатью, только вместо бумаги может выступать различная поверхность, а вместо тонера пластичный материал.

Процесс изготовления шестеренки с использованием традиционных технологий:

Процесс изготовления шестеренки аддативным способом(трехмерная печать):

Возможности аддитивных технологий

Трехмерные принтеры могут использовать для печати самые разнообразные исходные материалы – например такие как дерево, керамика и даже металл и бетон. Возможности и перспективы аддитивных технологий поистине огромны, а сфера применения – очень обширна. От создания домашней утвари и простых бытовых предметов до сложных деталей и технических изделий. Они могут использоваться в дизайне и моделировании, создании мебели и осветительных приборов, музыкальных инструментов, «печатания» одежды и обуви, создании скульптур, картин, орнаментов и т.д, в архитектуре могут активно применятся для создания домов, причем не только уменьшенных моделей, но и готовых зданий в натуральную величину. Найдет технология применение и в кинематографе, учитывая потребность режиссеров в реквизите. Широчайшие возможности открывает 3d –печать для медицины – печать точных копий моделей человеческих органов и тканей поможет квалифицированному обучению медиков, созданию протезов и т.д. В автомобилестроении эта технология ускорит создание сложных механизмов – например мостов, коробок передач, головок блока цилиндров.

медицинский протез для ноги, изготовленный с помощью трехмерной печати

Демонстрация работы 3D принтера и различные продукты, изготовленные с его помощью:

Вообще если брать именно сферу обучения, то возможности 3-d печать представляет просто неограниченные – создание макетов, наглядная демонстрация уменьшенных копий реальных деталей и механизмов. Пример – необходима демонстрация учащимся устройства двигателя внутреннего сгорания. Моментально можно загрузить файл модели и распечатать её уменьшенную копию. Таким образом, модели сложных технических систем будут на руках буквально у каждого учащегося. Возможна даже распечатка не просто макета, а реально работающей уменьшенной копии устройства.

Наглядная модель 8-циллиндрового двигателя, напечатанного на 3D принтере:

Применятся трехмерная печать может также в кулинарии(«печать» тортов и пирожных), робототехнике(производство роботов путем «печати» с нуля), машиностроении(изготовление сложных деталей) и авиакосмической промышленности(создание двигателей и корпусов космических кораблей например). Для живописи появится возможность рисования в пространстве. Уже сейчас существуют и продаются 3d-ручки, дающие такую возможность. Как видно из приведенных выше примеров, аддативные технологии затрагивают практически все сферы жизни, что говорит о подлинной революции и коренном преобразовании способа производства и изготовления вещей, деталей и механизмов. По сути вся основная сложность в изготовлении конечной детали аддативным способом заключается в проектировании и создании компьютерной модели, которая затем может быть легко воспроизведена с помощью трехмерной печати. Если ранее трехмерная печать применялась только лишь для быстрого создания прототипов изделий и продуктов, то уже сейчас речь идет о серийном производстве. Сложность изготавливаемого изделия по сути ограничивается только сложностью его компьютерной модели.

Обувь, напечатанная на 3D принтере, верхняя часть ботинка изготовлена из прочного хлопка

Пространственное рисование с помощью 3d-ручек – еще один пример реализации аддативных технологий:

Геометрия изделия практически не имеет значения, аддативный способ позволяет изготовить деталь или продукт любой сложности, конструктивные ограничения, в отличие от традиционного способа производства, отсутствуют, главное смоделировать образец в компьютерной программе. Это позволит изготовить невероятно красивые в плане дизайна и оформления товары, производство которых ранее было невозможным из-за естественных ограничений традиционной технологии. Аддативная технология производства позволяет получать легкие и в то же самое время, очень прочные детали конструкции, путем удаления из них избыточного материала, без которого нельзя обойтись при изготовлении обычными способами. При уменьшении веса в этом случае нисколько не будет страдать прочность и функциональность конечного изделия.

Существует не только возможность подготовить компьютерную модель и распечатать её, но и проделать обратный процесс – перенести уже готовое изделие в компьютерный CAD-файл, для последущего тиражирования или модификации. Для этого используется оптическое сканирование материального объекта

Замок Андрея Руденко — 3D принтер печатает бетоном замок в натуральную величину:


Результат:

Преимущества аддитивных технологий

Перечислим некоторые очевидные преимущества аддативных технологий.

1.Сокращение технологической цепочки и резкое уменьшение отходов от производства
Создание конечного продукта классическими способами как правило включает в себя несколько этапов. Вышеупомянутый простой пример с изготовлением болта(Стальной брусок -> Металлический пруток -> Готовый болт) включает в себя несколько этапов и подразумевает огромные усилия, расход энергии и материала. С помощью 3d-печати изготовление такого болта будет происходить существенно быстрее и с меньшими затратами.

2.Сильная индивидуализация производимого продукта
Поскольку внесение изменений в исходный файл для печати не требует длительных усилий, как переработка реальной модели, это позволит в сжатые сроки на основе имеющейся исходной модели создать индивидуальный уникальный продукт, изменив или дополнив оригинал. Таким образом можно создавать огромные множества различных вариаций одного и того же продукта.

3.Ускорение внедрения новых идей
Конструкторы смогут намного быстрее воплощать свои задумки в реальность. Разработав новый вариант двигателя и создав его модель в компьютерной программе например, можно будет в течении нескольких часов распечатать готовый пробный образец, внести изменения, оптимизировать, доработать и т.д.

4.Возможность изготовления деталей высокой сложности
Некоторые детали, которые затруднительно или вообще невозможно изготовить традиционной механической обработкой, могут быть легко «напечатаны», если предварительно создать готовую компьютерную модель.

5.Относительная легкость обучения персонала
Создание подробной трехмерной модели какого-либо изделия, конечно не самое простое занятие, но все же это существенно проще, чем воспроизвести подобную пробную деталь в реальности вручную. Обучить человека, имеющего пространственное воображение работе с компьютерной программой намного проще, чем осваивать несколько профессий для самостоятельного создания прототипа изделия в натуральную величину руками.

Пример 3D печати деревом:

Пример 3D печати металлом:

Заключение

Возможно, спустя какое-то время технологии трехмерной печати станут для нас чем то обыденным, точно так же как прочно в повседневную жизнь вошли компьютеры, интернет, планшеты, смартфоны и ноутбуки. Однако сейчас это все ещё выглядит как подлинный прорыв в науке. Глядя на возможности этих гигантских машин, воспроизводящих сложные детали и конструкции, невольно поражаешься. Иногда даже кажется, что все происходящее – это сюжет очередного футуристического фильма. Однако это не так, аддативные технологии существуют и развиваются. Мы наблюдаем настоящую революцию шестого экономического уклада на марше. По всей видимости, это очередной этап в научном развитии человечества и за подобными способами производства стоит большое будущее

Ведущие страны мира активно включаются в 3D-гонку. Так, в 2012 г. в Янгстоуне, Огайо, открылся Национальный инновационный институт аддитивного производства NAMII - первый центр аддитивных технологий из пятнадцати создаваемых в США. Машинный парк института уже насчитывает 10 аддитивных машин, три из которых являются самыми современными машинами для создания металлических деталей.

Терминология и классификация

Суть аддитивных технологий заключается в соединении материалов для создания объектов из данных 3D-модели слой за слоем. Этим они отличаются от обычных субтрактивных технологий производства, подразумевающих механическую обработку - удаление вещества из заготовки.

Аддитивные технологии классифицируют:

  • по используемым материалам (жидким, сыпучим, полимерным, металлопорошковым);
  • по наличию лазера;
  • по способу фиксирования слоя построения (тепловое воздействие, облучение ультрафиолетом или видимым светом, связующим составом);
  • по способу образования слоя.

Есть два способа формирования слоя. Первый заключается в том, что сначала насыпают на платформу порошковый материал, распределяют его роликом или ножом для создания ровного слоя материала заданной толщины. Происходит селективная обработка порошка лазером или другим способом соединения частиц порошка (плавкой или склеиванием) согласно текущему сечению CAD-модели. Плоскость построения неизменна, а часть порошка остаётся нетронутой. Этот способ называют селективным синтезом, а также селективным лазерным спеканием, если инструментом соединения является лазер. Второй способ состоит в непосредственном осаждении материала в точку подведения энергии.

Организация ASTM, занимающаяся разработкой отраслевых стандартов, разделяет 3D-аддитивные технологии на 7 категорий.

  1. Выдавливание материала. В точку построения по подогретому экструдеру подаётся пастообразный материал, представляющий собой смесь связующего и металлического порошка. Построенная сырая модель помещается в печь для того, чтобы удалить связующее и спечь порошок - так же, как это происходит в традиционных технологиях. Эта аддитивная технология реализована под марками MJS (Multiphase Jet Solidification, многофазное отверждение струи), FDM (Fused Deposition Modeling, моделирование методом послойного наплавления), FFF (Fused Filament Fabrication, производство способом наплавления нитей).
  2. Разбрызгивание материала. Например, в технологии Polyjet воск или фотополимер по многоструйной головке подается в точку построения. Эта аддитивная технология также называется Multi jetting Material.
  3. Разбрызгивание связующего. К ним относятся струйные Ink-Jet-технологии впрыскивания в зону построения не модельного материала, а связующего реагента (технология аддитивного производства ExOne).
  4. Соединение листовых представляет собой полимерную плёнку, металлическую фольгу, листы бумаги и др. Используется, например, в технологии ультразвукового аддитивного производства Fabrisonic. Тонкие пластины из металла свариваются ультразвуком, после чего излишки металла удаляются фрезерованием. Аддитивная технология здесь применяется в сочетании с субстрактивной.
  5. Фотополимеризация в ванне. Технология использует жидкие модельные материалы - фотополимерные смолы. Примером могут служить SLA-технология компании 3D Systems и DLP-технология компаний Envisiontec, Digital Light Procession.
  6. Плавка материала в заранее сформированном слое. Используется в SLS-технологиях, использующих в качестве источника энергии лазер или термоголовку (SHS компании Blueprinter).
  7. Прямое подведение энергии в место построения. Материал и энергия для его плавления поступают в точку построения одновременно. В качестве рабочего органа используется головка, оснащённая системой подвода энергии и материала. Энергия поступает в виде сконцентрированного пучка электронов (Sciaky) или луча лазера (POM, Optomec,). Иногда головка устанавливается на «руке» робота.

Эта классификация гораздо больше говорит о тонкостях аддитивных технологий, чем предыдущие.

Сферы применения

Рынок аддитивных технологий в динамике развития опережает остальные отрасли производства. Его средний ежегодный рост оценивается в 27% и, по оценке компании IDC, к 2019 г. составит 26,7 млрд долларов США по сравнению с 11 млрд в 2015 г.

Однако АТ-рынку ещё предстоит раскрыть неиспользованный потенциал в сфере производства товаров широкого потребления. До 10% средств компаний от стоимости производства товара расходуется на его прототипирование. И много компаний уже заняли данный сегмент рынка. Но остальные 90% идут в производство, поэтому создание приложений для быстрого изготовления товаров станет основным направлением развития этой отрасли в будущем.

В 2014 г. доля быстрого прототипирования на рынке аддитивных технологий хотя и уменьшилась, оставалась наибольшей - 35%, доля быстрого производства росла и достигла 31%, доля в создании инструментов оставалась осталась на уровне 25%, остальное приходилось на исследования и образование.

По отраслям экономики применение АТ-технологий распределилось так:

  • 21% - производство потребительских товаров и электроники;
  • 20% - автомобилестроение;
  • 15% - медицина, включая стоматологию;
  • 12% - авиастроение и космическая отрасль производства;
  • 11% - производство средств производства;
  • 8% - военная техника;
  • 8% - образование;
  • 3% - строительство.

Любители и профессионалы

Рынок АТ-технологий разделяется на любительский и профессиональный. Любительский рынок включает 3D-принтеры и их обслуживание, которое включает сервис, расходные материалы, программное обеспечение, и рассчитан на отдельных энтузиастов, сферу образования и визуализацию идей и облегчения коммуникации на начальной стадии развития нового бизнеса.

Профессиональные 3D-принтеры дорогостоящи и подходят для расширенного воспроизводства. У них большая зона построения, производительность, точность, надёжность, расширен ассортимент модельных материалов. Эти машины на порядок сложнее и требуют освоения особых навыков работы с самими устройствами, с модельными материалами и программным обеспечением. Как правило, оператором профессиональной машины становится специалист по аддитивным технологиям с высшим техническим образованием.

Аддитивные технологии в 2015 году

Согласно отчёту Wohlers Report 2015, с 1988 по 2014 г. в мире было установлено 79 602 промышленных 3D-принтера. При этом 38,1% устройств стоимостью более 5 тыс. долларов США приходится на США, 9,3% - на Японию, 9,2% - на Китай, и 8,7% - на Германию. Остальные страны мира находятся в значительном отрыве от лидеров. С 2007 по 2014 годовой объём продаж настольных принтеров вырос с 66 до 139 584 устройств. В 2014 г. 91,6% продаж приходился на настольные 3D-принтеры и 8,4% - на промышленные установки аддитивного производства, прибыль от которых, однако, составила 86,6% от общего объёма, или 1,12 млрд долларов США в абсолютном выражении. Настольные машины довольствовались 173,2 млн долларов США и 13,4%. В 2016 г. ожидается рост продаж до 7,3 млрд долларов США, в 2018 г. - 12,7 млрд, в 2020 г. рынок достигнет 21,2 млрд долларов.

Согласно Wohlers, FDM-технология превалирует, насчитывая около 300 брендов по всему миру, ежедневно пополняясь новыми модификациями. Некоторые из них продаются только локально, поэтому очень сложно, если вообще возможно, найти информацию о количестве брендов выпускаемых 3D-принтеров. С уверенностью можно сказать, что их количество на рынке увеличивается с каждым днём. Наблюдается большое разнообразие в размерах и применяемых технологиях. Например, берлинская компания BigRep производит огромный FDM-принтер под названием BigRep ONE.2 по цене 36 тыс. евро, способный печатать объекты размером до 900 х 1055 х 1100 мм с разрешением 100-1000 микрон, двумя экструдерами и возможностью использовать разные материалы.

Промышленность - за

Авиационная промышленность усиленно инвестирует в аддитивное производство. Применение аддитивных технологий позволит снизить расход материалов, затрачиваемых на изготовление деталей, в 10 раз. Ожидается, что компания GE Aviation будет ежегодно печатать 40 тыс. форсунок. А компания Airbus к 2018 г. собирается печатать до 30 т деталей ежемесячно. Компания отмечает значительный прогресс в характеристиках произведённых таким способом деталей по сравнению с традиционным. Оказалось, что кронштейн, который был рассчитан на 2,3 т нагрузки, в действительности может выдерживать нагрузку до 14 т при снижении его веса вдвое. Кроме того, компания печатает детали из алюминиевого листа и топливные коннекторы. В самолётах Airbus насчитывается 60 тыс. частей, напечатанных на 3D-принтерах Fortus компании Stratasys. Другие компании авиакосмической индустрии также используют технологии аддитивного производства. Среди них: Bell Helicopter, BAE Systems, Bombardier, Boeing, Embraer, Honeywell Aerospace, General Dynamics, Northrop Grumman, Raytheon, Pratt & Whitney, Rolls-Royce и SpaceX.

Цифровые аддитивные технологии уже используются в производстве разнообразных потребительских товаров. Компания Materialise, предоставляющая услуги аддитивного производства, сотрудничает с компанией Hoet Eyeware в изготовлении очков для коррекции зрения и солнечных очков. 3D-модели предоставляются множеством облачных сервисов. Только компании 3D Warehouse и Sketchup предлагают 2,7 млн образцов. Не остаётся в стороне и индустрия моды. RS Print использует систему, измеряющую давление подошвы, для печати индивидуальных стелек. Дизайнеры экспериментируют с бикини, обувью и платьями.

Быстрое прототипирование

Под быстрым прототипированием понимают создание прототипа изделия за максимально короткий срок. Оно входит в число основных применений технологий аддитивного производства. Прототип - это прообраз изделия, необходимый для оптимизации формы детали, оценки её эргономики, проверки возможности сборки и правильности компоновочных решений. Вот почему сокращение срока изготовления детали позволяет значительно сократить время разработки. Также прототип может являться моделью, предназначенной для проведения аэро- и гидродинамических испытаний или проверки функциональности деталей корпуса бытовой и медицинской техники. Много прототипов создаётся в качестве поисковых дизайнерских моделей с нюансами в конфигурации, цветовой гамме раскраски и т. д. Для быстрого прототипирования используются недорогие 3D-принтеры.

Быстрое производство

Аддитивные технологии в промышленности имеют большие перспективы. Малосерийное производство изделий со сложной геометрией и из специфических материалов распространено в судостроении, энергетическом машиностроении, восстановительной хирургии и дентальной медицине, аэрокосмической промышленности. Непосредственное выращивание изделий из металла здесь мотивировано экономической целесообразностью, так как этот оказался менее затратным. С использованием аддитивных технологий производят рабочие органы турбин и валов, импланты и эндопротезы, запасные части для автомобилей и самолётов.

Развитию быстрого производства способствовало и значительное расширение числа доступных металлопорошковых материалов. Если в 2000 годах насчитывалось 5-6 видов порошков, то сейчас предлагается широкая номенклатура, исчисляемая десятками композиций от конструкционных сталей до драгоценных металлов и жаропрочных сплавов.

Перспективны и аддитивные технологии в машиностроении, где их можно использовать при изготовлении инструментов иприспособлений для серийного производства - вставок для термопласт-автоматов, пресс-форм, шаблонов.

Ultimaker 2 - лучший 3D-принтер 2016 года

По мнению журнала CHIP, который провёл тестирование и сравнил характеристики бытовых 3D-принтеров, лучшими принтерами 2016 года являются модели Ultimaker 2 компании Ultimaker, Reniforce RF1000 компании Conrad и Replicator Desktop 3D Printer компании MakerBot.

Ultimaker 2+ в его улучшенной модели использует технологию моделирования методом наплавления. 3D-принтер отличается наименьшей толщиной слоя, равной 0,02 мм, небольшим временем расчёта, низкой стоимостью печати (2600 руб за 1 кг материала). Основные характеристики:

  • размер рабочей камеры - 223 х 223 х 305 мм;
  • вес - 12,3 кг;
  • размер головки - 0,25/0,4/0,6/0,8 мм;
  • температура головки - 180-260°C;
  • разрешение слоя - 150-60/200-20/400-20/600-20 микрон;
  • скорость печати - 8-24 мм 3 /с;
  • точность XYZ - 12,5-12,55 микрон;
  • материал - PLA, ABS, CPE диаметром 2,85 мм;
  • программное обеспечение - Cura;
  • поддерживаемые типы файлов - STL, OBJ, AMF;
  • - 221 Вт;
  • цена - 1 895 евро базовая модель и 2 495 евро расширенная.

По отзывам покупателей, принтер лёгок в установке и использовании. Отмечают высокое разрешение, саморегулирующееся ложе, большое разнообразие используемого материала, использование открытого программного обеспечения. К недостаткам принтера относят открытую конструкцию принтера, которая может привести к ожогу горячим материалом.

LulzBot Mini 3D Printer

В обзоре журнала PC Magazine Ultimaker 2 и Replicator Desktop 3D Printer также вошли в тройку лучших, но здесь на первом месте оказался принтер LulzBot Mini 3D Printer. Его спецификации таковы:

  • размер рабочей камеры - 152 х 152 х 158 мм;
  • вес - 8,55 кг;
  • температура головки - 300°C;
  • толщина слоя - 0,05-0,5 мм;
  • скорость печати - 275 мм/с при высоте слоя 0,18 мм;
  • материал - PLA, ABS, HIPS, PVA, PETT, полиэстер, нейлон, поликарбонат, PETG, PCTE, PC-ABS, и др. диаметром 3 мм;
  • программное обеспечение - Cura, OctoPrint, BotQueue, Slic3r, Printrun, MatterControl и др.;
  • потребляемая мощность - 300 Вт;
  • цена - 1 250 долларов США.

Sciaky EBAM 300

Одной из лучших промышленных машин аддитивного производства является EBAM 300 компании Sciaky. Электронно-лучевая пушка наносит слои металла со скоростью до 9 кг в час.

  • размер рабочей камеры - 5791 х 1219 х 1219 мм;
  • давление вакуумной камеры - 1х10 -4 Тор;
  • потребляемая мощность - до 42 кВт при напряжении 60 кВ;
  • технология - экструзия;
  • материал - титан и сплавы титана, тантал, инконель, вольфрам, ниобий, нержавеющая сталь, алюминий, сталь, сплав меди с никелем (70/30 и 30/70);
  • максимальный объём - 8605,2 л;
  • цена - 250 тыс. долларов США.

Аддитивные технологии в России

Машины промышленного класса в России не выпускаются. Пока только ведутся разработки в "Росатоме", лазерном центре МГТУ им. Баумана, университете «Станкин», политехническом университете Петербурга, Уральском федеральном университете. «Воронежсельиммаш», выпускающий учебно-бытовые 3D-принтеры «Альфа», разрабатывает промышленную аддитивную установку.

Такая же ситуация и с расходными материалами. Лидером разработки порошков и порошковых композиций в России является ВИАМ. Им производится порошок для аддитивных технологий, использующийся при восстановлении лопаток турбин, по заказу пермского «Авиадвигателя». Прогресс есть и у Всероссийского института лёгких сплавов (ВИЛС). Разработки ведутся различными инжиниринговыми центрами по всей Российской Федерации. "Ростех", Уральское отделение РАН, УрФУ ведут свои разработки. Но все они не способны удовлетворить даже небольшой спрос в 20 т порошка в год.

В связи с этим правительство поручило Минобрнауке, Минэкономразвитию, Минпромторгу, Минкомсвязи, РАН, ФАНО, "Роскосмосу", "Росатому", "Росстандарту", институтам развития создать согласованную программу разработок и исследований. Для этого предлагается выделить дополнительные бюджетные ассигнования, а также рассмотреть возможности софинансирования за счёт средств ФНБ и других источников. Рекомендовано поддержать новые в т. ч. аддитивные, РВК, "Роснано", фонду «Сколково», экспортному агентству "ЭКСАР", "Внешэкономбанку". Также правительство в лице Минпромторга подготовит раздел государственной программы по развитию и повышению конкурентоспособности промышленности.

Как известно, существует несколько методов 3D печати, однако все они являются производными аддитивной технологии производства изделий. Вне зависимости от того, какой 3D принтер вы используете, построение заготовки осуществляется путем послойного добавления сырья. Несмотря на то, что термин Additive Manufacturing используется отечественными инженерами очень редко, технологии послойного синтеза фактически оккупировали современную промышленность.

Экскурс в прошлое Additive Manufacturing

Цифровое производство нашло свое применение в медицине, космонавтике, производстве готовой продукции и прототипировании. Хотя 3D печать принято считать одним из главных открытий двадцать первого века, в действительности аддитивные технологии появились на несколько десятилетий раньше.

Родоначальником отрасли стал Чарльз Халл, основатель компании 3D Systems. В 1986 году инженер собрал первый в мире стереолитографический 3D-принтер, благодаря чему цифровые технологии сделали огромный рывок вперед. Приблизительно в то же время Скотт Крамп, позже основавший компанию Stratasys, выпустил первый в мире FDМ-аппарат. С тех пор, рынок трехмерной печати стал стремительно расти и пополняться новыми моделями уникального печатного оборудования.

Первое время обе технологии SLA и FDM развивались бок обок исключительно в направлении промышленного производства, однако в 1995 году назрел перелом, сделавший аддитивные методы изготовления продукции общедоступными. Студенты Массачусетского технологического института, Джим Бредт и Тим Андерсон, внедрили технологию послойного синтеза материала в корпус обычного настольного принтера. Именно так была основана компания Z Corporation, долгое время считавшаяся лидером в сфере бытовой печати объемных фигур.

Технология аддитивного производства — Эпоха инноваций

В наши дни AF-технологии используются повсеместно: научно-исследовательские организации с их помощью создают уникальные материалы и ткани, промышленные гиганты используют 3D принтеры для ускорения прототипирования новой продукции, архитектурные и конструкторские бюро нашли в 3D печати нескончаемый строительный потенциал, в то время как дизайн-студии буквально вдохнули новую жизнь в дизайнерский бизнес благодаря аддитивным машинам.

Наиболее точной аддитивной технологией считается стереолитография – методом поэтапного послойного отверждения жидкого фотополимера лазером. SLA принтеры используются преимущественно для изготовления прототипов, макетов и дизайнерских компонентов повышенной точности с высоким уровнем детализации.

Селективное лазерное спекание изначально появилось, как усовершенствованный метод отверждения жидкого фотополимера. SLS-технология позволяет в качестве чернил использовать порошкообразные материалы. Современные SLS-принтеры способны работать с керамической глиной, металлическим порошком, цементом и сложными полимерами.

В литейной отрасли недавно появились PolyJet-аппараты, работающие по классической AF-технологии. Они оборудованы струйными печатными головками, заправленными быстро-застывающим материалом. На сегодняшний день InkJet 3D принтеры нешироко распространены, однако не исключено, что уже через несколько лет трехмерная струйная печать станет столь же распространена, как и классические печатные устройства. Первопроходцем в данной отрасли стала компания ExOne с ее прототипирующей машиной S-Max.

Самыми дешевыми по-прежнему остаются FDM-принтеры – устройства, создающие трехмерные объекты путем послойного наплавления филамента. Наиболее распространенными принтерами данного типа остаются аппараты, печатающие расплавленной пластиковой нитью. Они могут оснащаться одной или несколькими печатными головками, внутри которых находится нагревательный элемент.

Большинство аддитивных принтеров, печатающих пластиком, способны создавать только одноцветные фигуры, однако в последнее время на рынке трехмерной печати появились машины, использующие одновременно несколько видов филамента. Данное новшество позволяет создать цветные объекты.

Перспективы AF-технологии

На данный момент рынок трехмерной печати далек от перенасыщения. Аналитики отрасли сходятся во мнении, что аддитивные технологии ждет радужное будущее. Уже сегодня научно-исследовательские центры, занижающиеся AF-разработками, получают огромные финансовые вливания от оборонного комплекса и медицинских государственных институтов, что не дает усомниться в точности экспертных прогнозов!



error: Контент защищен !!