Энергосберегающие лампы: устройство и принцип действия. Энергосберегающие лампы — подробная информация

Фото с сайта www.podrobnosti24.ru.

02.04.2012 14:35:46

Наверное, я консерватор, но никак не могу заставить себя полюбить новомодную форму светоснабжения - энергосберегающую лампу. У себя в квартире по-прежнему предпочитаю пользоваться «стекляшками». Однако уфимские магазины практически перешли на авангардный товар, поэтому, когда мне срочно понадобилось заменить перегоревшую лампочку в ванной, то в близлежащих торговых точках я увидела только энергосберегающие. Пришлось купить. Самое интересное, что светила она недолго. К тому моменту я нашла-таки обычные лампы накаливания и заменила освещение. А вот выкидывать спиралевидную новинку не стала - упаковала в коробочку и убрала на антресоли. Почему?

Напомню: буквально через пару лет привычные нам стеклянные лампочки вообще отойдут в прошлое – их полностью заменят энергосберегающие варианты. И если «стекляшки» были просты в своем устройстве – оболочка и спираль – то эти новые более сложны. При всех их достоинствах нельзя не помнить о том, что заполнены такие лампы инертным газом (ксенон, аргон), ртутными парами, покрыты изнутри люминофором… Одним словом, не такие уж они безобидные в употреблении. И «Общественная электронная газета» уже поднимала тему централизованного сбора и утилизации ртутных ламп. В частности, было отмечено, что пока в республике этого нет, но отрадно, что власти всерьез озаботились озвученной проблемой: схема организации сбора, транспортировки и обезвреживания бытовых ртутьсодержащих отходов уже разработана и должна скоро быть внедрена в жизнь. А пока экологи рекомендуют нам не выбрасывать использованные ртутные лампы в общий мусоросборник, а сдавать их в специальные пункты приема, имеющие лицензию на такой вид деятельности. Только с одной лампочкой я ведь не буду ходить, вот и приходится пока собирать в коробку на антресоли, чтобы, не дай Бог, наш шкодливый кот не уронил и не разбил эту без преувеличения опасную продукцию.

Кстати, о таком аварийном варианте: узнав, из чего состоит энергосберегающая лампочка, я не на шутку испугалась. Что, если бы эта перегоревшая лампа и вправду разбилась в моей тесной ванной или крохотной квартирке? А у меня ребенок, да еще – аллергик. Между прочим, в общем коридоре нашего подъезда вкрутили несколько таких ламп. Что, если хулиганистые подростки решат и их все побить, как до этого делали со стеклянными? Знаю, что ртуть - чрезвычайно вредное химическое вещество и относится к первому классу опасности. О том, что ее пары очень ядовиты и способны вызвать тяжелое отравление, знают почти все, ведь градусник есть практически в любой квартире. Как же быть, если такая лампочка разбилась в жилом помещении? Увы – продавцы в магазинах электротоваров на этот вопрос мне не ответили: кто посоветовал прочесть информацию на упаковке, а кто просто пожимал плечами. Но на коробочке, как правило, помещаются сведения только технического характера. Поэтому я обратилась к специалисту - инженеру-экологу ГУП «Табигат» (специализированного природоохранного предприятия) Альбине Шамсутдиновой. Вот что она посоветовала:

Во-первых, не трогайте образовавшийся мусор незащищенными руками – используйте хозяйственные защитные перчатки, оптимально - резиновые. Во-вторых, обязательно проветрите помещение. Следует заметить, что чем дороже лампочка (как правило, это продукция европейских производителей), тем менее она опасна, поскольку в ней не такое высокое содержание паров ртути. И наоборот – дешевые (это, в основном, китайские и российские лампы) содержат жидкую ртуть, следовательно, они более опасны. Лучше проводить уборку, защитив не только руки, но и дыхательные пути – например, надеть марлевую маску. Убрав все осколки в герметичный мешок или стеклянную емкость, протрите то место, где разбилась лампочка, используя 1-% раствор марганцовки. Что касается остатков лампы, то их нельзя утилизировать вместе с остальным бытовым мусором – нужно сдать в специализированные предприятия.

Если же разбиты несколько таких ламп в одном помещении: лучше не проявлять самодеятельности, а позвонить по телефону, набрав «112» - с мобильника и «123» - с городского аппарата в «Службу спасения». Эта служба вряд ли сразу же выедет по вашему звонку, поскольку ее специалисты оказывают помощь в крайних случаях – когда произошел значительный розлив ртути, но, во всяком случае, диспетчер подробно разъяснит - какие меры необходимо принять для правильной уборки и даст адрес ближайшего пункта приема поврежденных энергосберегающих ламп.

Население республики все шире использует именно такие новомодные лампы, однако, похоже, что о правильной их эксплуатации и тем более утилизации, к сожалению, мало кто задумывается. Так, может быть, целесообразно будет на первых порах хотя бы продавцам в магазинах поручить разъяснительную работу? Можно также в «Уголках потребителей» или на каком-либо другом видном месте у прилавка разместить памятку на эту тему. Наше здоровье и здоровье наших детей того стоит.


Назад в раздел

Мне нравится 0

Энергосберегающие лампы широко применяются в быту и на производстве, со временем они приходят в негодность, а между тем многие из них после несложного ремонта можно восстановить. Если вышел из строя сам светильник, то из электронной «начинки» можно сделать довольно мощный блок питания на любое нужное напряжение.

Как выглядит блок питания из энергосберегающей лампы

В быту часто требуется компактный, но в то же время мощный низковольтный блок питания, сделать такой можно, используя вышедшую из строя энергосберегающую лампу. В лампах чаще всего выходят из строя светильники, а блок питания остается в рабочем состоянии.

Для того чтобы сделать блок питания, необходимо разобраться в принципе работы электроники, содержащейся в энергосберегающей лампе.

Достоинства импульсных блоков питания

В последние годы наметилась явная тенденция к уходу от классических трансформаторных блоков питания к импульсным. Это связано, в первую очередь, с большими недостатками трансформаторных блоков питания, таких как большая масса, малая перегрузочная способность, малый КПД.

Устранение этих недостатков в импульсных блоках питания, а также развитие элементной базы позволило широко использовать эти узлы питания для устройств с мощностью от единиц ватт до многих киловатт.

Схема блока питания

Принцип работы импульсного блока питания в энергосберегающей лампе точно такой же, как в любом другом устройстве, например, в компьютере или телевизоре.

В общих чертах работу импульсного блока питания можно описать следующим образом:

  • Переменный сетевой ток преобразуется в постоянный без изменения его напряжения, т.е. 220 В.
  • Широтно-импульсный преобразователь на транзисторах превращает постоянное напряжение в прямоугольные импульсы, с частотой от 20 до 40 кГц (в зависимости от модели лампы).
  • Это напряжение через дроссель подается на светильник.

Рассмотрим и порядок работы импульсного блока питания лампы (рисунок ниже) более подробно.

Схема электронного балласта энергосберегающей лампы

Сетевое напряжение поступает на мостовой выпрямитель(VD1-VD4) через ограничительный резистор R 0 небольшого сопротивления, далее выпрямленное напряжение сглаживается на фильтрующем высоковольтном конденсаторе (С 0), и через сглаживающий фильтр (L0) подается на транзисторный преобразователь.

Запуск транзисторного преобразователя происходит в тот момент, когда напряжение на конденсаторе С1 превысит порог открытия динистора VD2. Это запустит в работу генератор на транзисторах VT1 и VT2, благодаря чему возникает автогенерация на частоте около 20 кГц.

Другие элементы схемы, такие как R2, C8 и C11, играют вспомогательную роль, облегчая запуск генератора. Резисторы R7 и R8 увеличивают скорость закрытия транзисторов.

А резисторы R5 и R6 служат как ограничительные в цепях баз транзисторов, R3 и R4 предохраняют их от насыщения, а в случае пробоя играют роль предохранителей.

Диоды VD7, VD6 – защитные, хотя во многих транзисторах, предназначенных для работы в подобных устройствах, такие диоды встроены.

TV1 – трансформатор, с его обмоток TV1-1 и TV1-2, напряжение обратной связи с выхода генератора подается в базовые цепи транзисторов, создавая тем самым условия для работы генератора.

На рисунке выше красным цветом выделены детали, подлежащие удалению при переделке блока, точки А–А` нужно соединить перемычкой.

Переделка блока

Перед тем как приступить к переделке блока питания, следует определиться с тем, какую мощность тока необходимо иметь на выходе, от этого будет зависеть глубина модернизации. Так, если требуется мощность 20-30 Вт, то переделка будет минимальной и не потребует большого вмешательства в существующую схему. Если необходимо получить мощность 50 и более ватт, то модернизация потребуется более основательная.

Следует иметь в виду, что на выходе блока питания будет постоянное напряжение, а не переменное. Получить от такого блока питания переменное напряжение частотой 50 Гц невозможно.

Определяем мощность

Мощность можно вычислить по формуле:

Р – мощность, Вт;

I – сила тока, А;

U – напряжение, В.

Например, возьмем блок питания со следующими параметрами: напряжение – 12 В, сила тока – 2 А, тогда мощность будет:

С учетом перегрузки можно принять 24-26 Вт, так что для изготовления такого блока потребуется минимальное вмешательство в схему энергосберегающей лампы мощностью 25 Вт.

Новые детали

Добавление новых деталей в схему

Добавляемые детали выделены красным цветом, это:

  • диодный мост VD14-VD17;
  • два конденсатора С 9 , С 10 ;
  • дополнительная обмотка, размещенная на балластном дросселе L5, количество витков подбирается опытным путем.

Добавляемая обмотка на дроссель играет еще одну немаловажную роль разделительного трансформатора, предохраняя от попадания сетевого напряжения на выход блока питания.

Чтобы определить необходимое количество витков в добавляемой обмотке, следует проделать следующие действия:

  1. на дроссель наматывают временную обмотку, примерно 10 витков любого провода;
  2. соединяют с нагрузочным сопротивлением, мощностью не менее 30 Вт и сопротивлением примерно 5-6 Ом;
  3. включают в сеть, замеряют напряжение на нагрузочном сопротивлении;
  4. полученное значение делят на количество витков, узнают, сколько вольт приходится на 1 виток;
  5. вычисляют необходимое число витков для постоянной обмотки.

Более детальный расчет приведен ниже.

Испытательное включение переделанного блока питания

После этого легко вычислить необходимое число витков. Для этого напряжение, которое планируется получить от этого блока, делят на напряжение одного витка, получается количество витков, к полученному результату добавляют про запас примерно 5-10%.

W=U вых /U вит, где

W – количество витков;

U вых – требуемое выходное напряжение блока питания;

U вит – напряжение на один виток.

Намотка дополнительной обмотки на штатный дроссель

Оригинальная обмотка дросселя находится под напряжением сети! При намотке поверх нее дополнительной обмотки необходимо предусмотреть межобмоточную изоляцию, особенно если наматывается провод типа ПЭЛ, в эмалевой изоляции. Для межобмоточной изоляции можно применить ленту из политетрафторэтилена для уплотнения резьбовых соединений, которой пользуются сантехники, ее толщина всего 0,2 мм.

Мощность в таком блоке ограничена габаритной мощностью используемого трансформатора и допустимым током транзисторов.

Блок питания повышенной мощности

Для этого потребуется более сложная модернизация:

  • дополнительный трансформатор на ферритовом кольце;
  • замена транзисторов;
  • установка транзисторов на радиаторы;
  • увеличение емкости некоторых конденсаторов.

В результате такой модернизации получают блок питания мощностью до 100 Вт, при выходном напряжении 12 В. Он способен обеспечить ток 8-9 ампер. Этого достаточно для питания, например, шуруповерта средней мощности.

Схема модернизированного блока питания приведена на рисунке ниже.

Блок питания мощностью 100 Вт

Как видно на схеме, резистор R 0 заменен на более мощный (3-ваттный), его сопротивление уменьшено до 5 Ом. Его можно заменить на два 2-ваттных по 10 Ом, соединив их параллельно. Далее, С 0 – его емкость увеличена до 100 мкф, с рабочим напряжением 350 В. Если нежелательно увеличивать габариты блока питания, то можно подыскать миниатюрный конденсатор такой емкости, в частности, его можно взять из фотоаппарата-мыльницы.

Для обеспечения надежной работы блока полезно несколько уменьшить номиналы резисторов R 5 и R 6 , до 18–15 Ом, а также увеличить мощность резисторов R 7 , R 8 и R 3 , R 4 . Если частота генерации окажется невысокой, то следует увеличить номиналы конденсаторов C­ 3 и C 4 – 68n.

Самым сложным может оказаться изготовление трансформатора. Для этой цели в импульсных блоках чаще всего используют ферритовые кольца соответствующих размеров и магнитной проницаемости.

Расчет таких трансформаторов довольно сложен, но в интернете есть много программ, с помощью которых это очень легко сделать, например, «Программа расчета импульсного трансформатора Lite-CalcIT».

Как выглядит импульсный трансформатор

Расчет, проведенный с помощью этой программы, дал следующие результаты:

Для сердечника используется ферритовое кольцо, его внешний диаметр – 40, внутренний – 22, а толщина – 20 мм. Первичная обмотка проводом ПЭЛ – 0,85 мм 2 имеет 63 витка, а две вторичных тем же проводом – 12.

Вторичную обмотку необходимо наматывать сразу в два провода, при этом их желательно предварительно слегка скрутить между собой по всей длине, так как эти трансформаторы очень чувствительны к несимметричности обмоток. Если не соблюдать это условие, то диоды VD14 и VD15 будут нагреваться неравномерно, а это еще больше увеличит несимметричность что, в конце концов, выведет их из строя.

Зато такие трансформаторы легко прощают значительные ошибки при расчете количества витков, до 30%.

Так как эта схема изначально рассчитывалась для работы с лампой мощностью 20 Вт, то установлены транзисторы 13003. На рисунке ниже позиция (1) – транзисторы средней мощности, их следует заменить на более мощные, например, 13007, как на позиции (2). Возможно, их придется установить на металлическую пластину (радиатор), площадью около 30 см 2 .

Испытание

Пробное включение стоит проводить с соблюдением некоторых мер предосторожности, чтобы не вывести из строя блок питания:

  1. Первое пробное включение производить через лампу накаливания 100 Вт, чтобы ограничить ток на блок питания.
  2. К выходу обязательно подключить нагрузочный резистор 3-4 Ома, мощностью 50-60 Вт.
  3. Если все прошло штатно, дать поработать 5-10 мин., отключить и проверить степень нагрева трансформатора, транзисторов и диодов выпрямителя.

Если в процессе замены деталей не были допущены ошибки, блок питания должен заработать без проблем.

Если пробное включение показало работоспособность блока, остается испытать его в режиме полной нагрузки. Для этого сопротивление нагрузочного резистора уменьшить до 1,2-2 Ом и включить его в сеть напрямую без лампочки на 1-2 минуты. После чего отключить и проверить температуру транзисторов: если она превышает 60 0 С, то их придется установить на радиаторы.

В связи с ежегодным дорожанием электроэнергии, нам приходится осваивать и энергосберегающие технологии, не забывая при этом, что бытовой сектор также является неплохим направлением для введения успешного бизнеса. Это первое о чем я подумал, когда приняли законопроект о запрете на использование организациями обычных ламп для освещения, или еще как их называют ламп накаливания, предложив в качестве альтернативы энегосберегающие. Давайте теперь попробуем разобраться, действительно ли они могут сэкономить электроэнергию. Могу сразу сказать, что экономия есть уже в сроке службы.

Обычная лампа накаливания может прослужить вам около 1000 часов, а энергосберегающая (средняя по стоимости) 6000 часов, хотя по словам многих производителей, они могут работать и до 10000 часов.

Теперь мощность лампочки умножаем на стоимость энергии и на время работы, в итоге троекратная экономия семейного бюджета. Но для приобретения такого энергосберегающего «чуда» вам нужно будет изрядно потратиться, потому-что они гораздо дороже обычных.

Во время запрета обычных лампочек в Англии, по видимому они исходили из того, сколько в среднем получает гражданин страны, и на семейный бюджет Английской семьи этот законопроект не сильно сказался.

Доход россиянина сильно отличается от дохода европейца. Я сейчас не буду говорить организациям это под силу или нет, потому-что я это не знаю. Но так как в среднем энергосберегающая лампа стоить 300 – 600 рублей, а временами лампочки имеют свойства перегорать и по случайности их можно разбить, я решил отказаться от такого энергетического прогресса.

Но тут в дело вмешалась жена, которая мне на 23 февраля вместе с основным подарком, подарила эту «забаву». В стороне не остались и дети, так как настольные лампы также плавно разогревались, в сентябре их также заменили.

И получилось так, что постепенно в доме все лампы я поменял на энергосберегающие, а вместе с тем и снизилась ежемесячная плата за электроэнергии. Так является ли чудом энергосберегающая лампа? Здесь чуда нет.

Благодаря современным технологиям старую лампу дневного света и люминесцентную лампу скомпоновали до размера обычной лампы. Так же для покрытия стенок стеклянных трубок была использована специальная краска (люминесцентная), которая во время облучения ультрафиолетовым излучением светится.

Возникновение ультрафиолетового излучения происходит благодаря коронному разряду на электродах атомов ртути, стабилизируемые инертными газами, ксеноном или аргоном. Так что пары ртути является сильнейшим ядом, которые не нужно не только не разбивать, но и не выкидывать в мусорницу.

Многие сейчас я думаю подумали, что в связи с такой относительной опасностью я их вообще не буду использовать. Но не стоит об этом так сильно беспокоится, так как в таких лампах производилась работа по уменьшению объема труб до минимума, да к тому же количество закачиваемого туда ртути является ничтожным. А информацию о вредных компонентах я дал в качестве профилактики, в случаи при возникновении какой – нибудь непредвиденной ситуации приняли адекватные меры.

Цоколь на энергосберегающих лампах является обычным E 27, который подойдет на все виды стандартных светильников. Заменить их не сложно, хотя во время покупки учитывается еще большая длина лампы, которая в существующие габариты может еще не влезть. Для малогабаритных светильников подойдет с цоколем E 14.

Здесь также необходимо определиться с габаритными размерами, так как во всех энергосберегающих лампах имеется блок электроники, в связи с которым существенно увеличивается его размер. Определить какой мощностью обладает световой поток лампы можно при помощи цифры и буквы W, которая должна указываться на самой лампе т.е 5W, 10W и т.п.

У качественных ламп включение является плавным, т.е происходит разогревание лампы, а на полною мощность она заработает через некоторое время. Срок службы этих ламп сокращается именно из-за частых включений и выключений. Могу порекомендовать не выключать свет на кухне, так через минуту его опять кто-то включит.

В итоге энергосберегающие лампы обладают:

1) длительным сроком службы

2) малым выделением тепла

3) плавным включением, ровным и мягким выключением

4) существенной экономией энергии

5) высоким техническим уровнем исполнения и современным дизайном

Недостатки энергосберегающих ламп можно отнести:

1) высокую стоимость

2) привычку к свету лампы накаливания

Компактные люминесцентные лампы — разновидность привычных нам люминесцентных ламп. Большинство энергосберегающих ламп, представленных в наших магазинах, созданы с целью заменить устаревшие лампы накаливания не меняя при этом сам светильник. Лампы такого типа стремительно вошли в нашу жизнь на стыке XIX и XXI веков и видимо уже в скором времени мы будем называть их просто "лампой", а не "энергосберегающей лампой".

Несмотря на свою простоту, для многих работа лампы все еще является загадкой. Попробуем разобраться в устройстве современной компактной флюоресцентной лампы и принципе ее работы.

Устройство энергосберегающих ламп (КЛЛ).


Энергосберегающая лампа Elektrostandard «Компактный винт (FS) укороченный» 24 Вт E27 2700K.

Цоколь.

Обеспечивает электрический контакт лампы с сетью питания.
В России распространены несколько типов цоколей: Е14, Е27, GU10, G5.3, G4.

Корпус лампы.

В корпусе размещается пускорегулирующее устройство (ПРА), предохранитель и соединительные провода. На поверхности корпуса наносится маркировка, в которой указаны напряжение питания, мощность, цветовая температура.

Предохранитель.

Применяется для защиты компонентов электронной платы от возгорания в случае скачков напряжения в сети питания.

Электронная плата.

На небольшой плате спрятанной внутри корпуса лампы смонтирован ПРА (пускорегулирующий аппарат). Он обеспечивает запуск и немерцающее свечение лампы. ПРА современных ламп оснащен помехозащитным фильтром, который предотвращает появление помех в сети электропитания.

Корпус лампы.

Корпус лампы изготавливается из негорючего пластика. В верхней части корпуса крепится колба люминесцентной лампы.

Колба (трубка).

Колба энергосберегающей лампы представляет из себя трубку запаянную с двух сторон. В противоположных концах колбы находятся электроды. Трубка заполнена парами ртути и аргона. Внутренняя поверхность колбы покрыта слоем люминофора. При подаче напряжения на электроды, через них начинает течь ток прогрева, который разогревает электроды и начинается процесс термоэлектродной эмиссии. В момент достижения электродами определенной температуры, они начинают испускать поток электронов. Электроны, сталкиваясь с атомами ртути, вызывают ультрафиолетовое излучение. В свою очередь, ультрафиолетовое излучение попадая на люминофор преобразовывается в видимый свет. В зависимости от типа люминофора, лампа может иметь разную световую температуру: от 2700 до 6500K.

Светодиодные лампы. Устройство и принцип работы.

Малый размер светодиодов, позволяет конструировать самые разнообразные форме лампы. На сегодняшний день лампы на основе светодиодов готовы заменить лампы любых типов. Светодиодные лампы применяются как в бытовых светильниках, так и в промышленном освещении.


Распространенная форма исполнения светодиода.

Светодиодные лампы достаточно просты по своей конструкции, но работа основного элемента – светодиода (LED - Light-emitting diode ) – сложный физический процесс.

Светодиод – полупроводниковый прибор с p-n переходом или контактом металл-полупроводник. При прохождении прямого тока через p-n переход происходит инжекция неосновных носителей заряда (электронов или дырок) в базовую область диодной структуры.

Процесс самопроизвольной рекомбинации инжектированных неосновных носителей заряда, происходящих как в базовой области, так и в самом p-n переходе, сопровождается переходом их с высокого энергетического уровня на более низкий. В результате этого процесса избыточная энергия выделяется в виде излучения кванта света.

Высвобождение электроном энергии происходит во многих типах радиоэлектронных приборов, но видеть свет мы можем только в том случае, если прибор собран из определённых материалов. Спектральные характеристики излучаемого света зависят в большей степени от химического состава использованных в нём полупроводников.


Светодиодная лампа в разобранном виде.

Крепление рассеивателя.

Рассеиватели светодиодных ламп имеют различную конструкцию. На рисунке представлена одна из распространенных конструкций рассеивателя.

Рассеивающий элемент.

Светодиод дает достаточно узконаправленный луч света. Рассеиватель предназначен для увеличения угла рассеивания света.

Корпус лампы.

Корпус изготавливается из металла. На корпусе мощных ламп имеются ребра охлаждения, которые не позволяют перегреваться светодиодам внутри лампы.

Плата со светодиодами.

В зависимости от типа лампы, на плате может быть установлено от одного до десятков светодиодов.

Электронная плата.

Миниатюрная печатная плата содержит стабилизатор напряжения и диодный мост. Обеспечивает выпрямление, сглаживание и стабилизацию напряжения необходимого для питания светодиодов.

Цоколь.

Современные светодиодные лампы выпускаются в различных корпусах и со всеми популярными видами цоколей: Е14, Е27, GU10, G5.3, G4.

Типы цоколей энергосберегающих ламп.

Компактные люминесцентные и светодиодные лампы Elektrostandard производятся со всеми распространенными в России типами цоколей:

Цветовая температура ламп Elektrostandard.

В светодизайне часто требуется использовать лампы различной световой температуры. В классических интерьерах требуются теплый желтый свет, похожий на свет от лампы накаливания или свечи, а в современном hi-tech дизайне чаще используется холодный свет. Лампы компании Elektrostandard представлены в трех распространенных цветовых температурах:

2700K – желтый свет, соответствует лампе накаливания;

4200K – такие лампы дают теплый (светло-желтый) свет;

6500K – свечение таких ламп более холодное, соответствует дневному свету.

В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.

Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.

Отличительные особенности люминесцентных ламп от обычных ламп накаливания.

Люминесцентные лампы не зря называют энергосберегающими, так как их применение позволяет снизить энергопотребление на 20 – 25 % . Их спектр излучения более соответствует естественному дневному свету. В зависимости от состава применяемого люминофора можно изготавливать лампы с разным оттенком свечения, как более тёплых тонов, так и холодных. Следует отметить, что люминесцентные лампы более долговечны, чем лампы накаливания. Конечно, многое зависит от качества конструкции и технологии изготовления.

Устройство компактной люминесцентной лампы (КЛЛ).

Компактная люминесцентная лампа с электронным балластом (сокращённо КЛЛ) состоит из колбы, электронной платы и цоколя E27 (E14), с помощью которого она устанавливается в стандартном патроне.

Внутри корпуса размещается круглая печатная плата, на которой собран высокочастотный преобразователь. Преобразователь при номинальной нагрузке имеет частоту 40 – 60 кГц . В результате того, что используется довольно высокая частота преобразования, устраняется “моргание”, свойственное люминесцентным лампам с электромагнитным балластом (на основе дросселя), которые работают на частоте электросети 50 Гц. Принципиальная схема КЛЛ показана на рисунке.

По данной принципиальной схеме собираются в основном достаточно дешёвые модели, к примеру, выпускаемые под брендом Navigator и ERA . Если вы используете компактные люминесцентные лампы, то, скорее всего они собраны по приведённой схеме. Разброс указанных на схеме значений параметров резисторов и конденсаторов реально существует. Это связано с тем, что для ламп разной мощности применяются элементы с разными параметрами. В остальном схемотехника таких ламп мало чем отличается.

Разберёмся подробнее в назначении радиоэлементов, показанных на схеме. На транзисторах VT1 и VT2 собран высокочастотный генератор. В качестве транзисторов VT1 и VT2 используются кремниевые высоковольтные n-p-n транзисторы серии MJE13003 в корпусе TO-126. Обычно на корпусе этих транзисторов указываются только цифровой индекс 13003 . Также могут применяться транзисторы MPSA42 в более миниатюрном корпусе формата TO-92 или аналогичные высоковольтные транзисторы.

Миниатюрный симметричный динистор DB3 (VS1 ) служит для автозапуска преобразователя в момент подачи питания. Внешне динистор DB3 выглядит как миниатюрный диод. Схема автозапуска необходима, т.к преобразователь собран по схеме с обратной связью по току и поэтому сам не запускается. В маломощных лампах динистор может отсутствовать вообще.

Диодный мост , выполненный на элементах VD1 – VD4 служит для выпрямления переменного тока. Электролитический конденсатор С2 сглаживает пульсации выпрямленного напряжения. Диодный мост и конденсатор С2 являются простейшим сетевым выпрямителем. С конденсатора C2 постоянное напряжение поступает на преобразователь. Диодный мост может выполняться как на отдельных элементах (4 диодах), либо может применяться диодная сборка.

При своей работе преобразователь генерирует высокочастотные помехи, которые нежелательны. Конденсатор С1 , дроссель (катушка индуктивности) L1 и резистор R1 препятствуют распространению высокочастотных помех по электросети. В некоторых лампах, видимо из экономии:) вместо L1 устанавливают проволочную перемычку. Также, во многих моделях нет предохранителя FU1 , который указан на схеме. В таких случаях, разрывной резистор R1 также играет роль простейшего предохранителя. В случае неисправности электронной схемы потребляемый ток превышает определённое значение, и резистор сгорает, разрывая цепь.

Дроссель L2 обычно собран на Ш -образном ферритовом магнитопроводе и внешне выглядит как миниатюрный броневой трансформатор . На печатной плате этот дроссель занимает довольно внушительное пространство. Обмотка дросселя L2 содержит 200 – 400 витков провода диаметром 0,2 мм. Также на печатной плате можно найти трансформатор, который указан на схеме как T1 . Трансформатор T1 собран на кольцевом магнитопроводе с наружным диаметром около 10 мм. На трансформаторе намотаны 3 обмотки монтажным или обмоточным проводом диаметром 0,3 – 0,4 мм. Число витков каждой обмотки колеблется от 2 – 3 до 6 – 10.

Колба люминесцентной лампы имеет 4 вывода от 2 спиралей. Выводы спиралей подключаются к электронной плате методом холодной скрутки, т.е без пайки и прикручены на жёсткие проволочные штыри, которые впаяны в плату. В лампах малой мощности, имеющих малые габариты, выводы спиралей запаиваются непосредственно в электронную плату.

Ремонт бытовых люминесцентных ламп с электронным балластом.

Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.

Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.

Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.

Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности .

При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью .

Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.

Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.

Разборка люминесцентной лампы с электронным балластом.

Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.

Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.

Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.

Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).

Восстановление работоспособности ламп с электронным балластом.

При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра . Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.

Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.

Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.

В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.

Холодный и горячий режим запуска люминесцентных ламп.

Бытовые люминесцентные лампы бывают двух типов:

    С холодным запуском

    С горячим запуском

Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.

Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.

Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.

Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC - терморезистор) . На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.

В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.

В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.

Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается. Поэтому при ремонте ламп с балластом следует обратить на него внимание.

Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.

Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.



error: Контент защищен !!