Модифицирования алюминия и алюминиевых сплавов. Модифицирование сплавов

Существующие в настоящее время спрообы модифицирования заэвтектических (особенно содержащих более 20% Si) силуминов весьма, разнообразны. Модифицирование осуществляют фосфористой медью, красным фосфором, различными органическими соединениями фосфора, термитными смесями и элементами типа К, Bi, Pb, Sb и др. За рубежом для модифицирования заэвтектических силуминов применяют препара­ты, содержащие фтортитанат (Aiphosit) и фторцирконат (Phoral) ка­лия, а также другие вещества.

Общий недостаток всех известных модификаторов заключается в том, что они измельчают лишь первичные кристаллы кремния, огруб­ляя эвтектику, и не позволяют получить нужную структуру и механиче­ские свойства заэвтектических силуминов.

Кроме того, все органические соединения, используемые в качестве модификаторов, очень токсичны. Применение перечисленных элементов для получения заданного эффекта модифицирования приводит к изме­нению специальных свойств сплава таких, как теплопроводность, коэф­фициент термического расширения и т. д., так как они вводятся в боль­шом количестве, около 1% и более.

В настоящей работе приведены исследования возможности приме­нения в качестве модификаторов заэвтектических силуминов неоргани­ческих соединений углерода и фосфора. Согласно принципа структурно­го соответствия углерод наиболее близок к кремнию (разница в пара­метрах решеток менее 10%).

Введение углерода как модификатора в сплав в составе органиче­ского соединения имеет следующие недостатки: высокую токсич­ность, измельчение лишь кристаллов кремния.

Отсутствие должного эффекта при введении органических соедине­ний углерода и фосфора объясняется тем, что сплав загрязняется про­дуктами их распада и реакции образования Аl4C3 и АlР, которые служат подложкой для кристаллов кремния, сопровождается газонасыщением и образованием большого количества неметаллических включений.

Исследования по использованию в качестве модификатора заэвтектических силуминов неорганических соединений углерода и фосфора проводились на сложнолегированном сплаве с 20% кремния.

Выбор углеродистых соединений осуществляли на основе анализа карбидов элементов, входящих в сплав, концентрация которых выше 1%, по следующим параметрам: величине растворимости металла кар­бидного соединения при температуре 1023-1073K; разнице параметров решеток с кремнием; вероятности распада карбидного соединения в сплаве (величине термодинамического изобарного потенциала). В табл. 1 приведены анализируемые параметры карбидных соединений.

В качестве модификатора взяты наименее прочные карбидные сое­динения металлов. Так, карбид Сr 3 С 2 наименее прочен, чем Сr 4 С (Сr 23 С 6), a WC чем W 2 C. Вероятность образования соединений типа Аl4С3 при вводе в расплав карбидов металла, количество которых в ос­новном определяет эффект модифицирования кремния, может быть оценена величиной изобарного потенциала, рассчитанного на 1 г-атом Аl4C3 без учета термодинамической активности элементов и перекрест­ного влияния компонентов друг на друга.

Полнота эффекта модифицирования при вводе в алюминиево-крем­ниевый сплав карбидных соединений будет зависеть от растворимости металла карбидного соединения при температуре обработки. Данные по растворимости металлов карбидных соединений при температуре 1073К приведены в табл. 1.

При ограниченной растворимости металла карбидного соединения последнее, имея незначительные различия в параметрах решеток с крем­нием, может быть использовано в качестве подложки для кристаллизу­ющихся кристаллов кремния. Такими являются соединения WC и VC, однако, из-за высокой стоимости они экономически нецелесообразны.

Соединения типа TiC и Сr 3 С 2 не отвечают требованиям, предъявляе­мым к модификаторам. Так, при вводе TiC образование. соединений Аl4С3 не происходит, о чем свидетельствует положительный изобарный потенциал (табл. 1). Параметры решетки TiC значительно отличаются от кремния. При вводе Сr 3 С 2 и неполной его растворимости карбиды хрома будут играть отрицательную роль неметаллических включений в сплаве, хотя частично эффект модифицирования присутствует. Те же недостатки имеет карбид молибдена.

Из анализа данных табл. 1 применительно к алюминиево-кремние­вым сплавам следует, что наиболее подходящими являются карбиды Ni 3 C и Fe 3 C. У них самая низкая температура плавления, хорошая раст­воримость металлов в сплаве и незначительная разница в параметрах решеток с кремнием.

На практике оценка модифицирующего эффекта карбидов Ni 3 C и Fe 3 C приводилась по изменению размеров структурных составляющих сплава. Ввод карбидов в сплав осуществлялся при температуре 1933- 1073К в виде кусков размерами 3-4 мм и в виде порошка. Кусковой карбид загружался вместе с шихтой, а порошок вводился в жидкий металл.

Степень модифицирования т определялась по следующему выра­жению:

M= 100·(x 0 – x)/x 0

где х 0 ,х - средний размер структурных составляющих, определяемых методом секущих, мм.

В микроструктуре сплава после травления в реактиве, состоящем из 1 см 3 HF и 1,5 см 3 НСl, 2.5 см 3 HNO 3 и 95 см 3 Н 2 0, было выделено пять основных структурных составляющих, отличающихся конфигура­цией и цветом: темно-серые кристаллы кремния (фаза Л), эвтектика (фаза Е), зерна твердого раствора (фаза D) и иптерметаллические сое­динения легирующих составляющих сплава (фазы В и С).

Одновременно на сплаве исследовалось влияние модифицирующих элементов па теплофизические и физико-механические свойства; коэф­фициент термического расширения в диапазоне 273—373К, удельное сопротивление разрыву, относительное удлинение, твердость.

Коэффициент линейного расширения определяли на приборе ИКВ-3 на образце диаметром 3X50 мм, погруженном в подогреваемую среду, а физико-механические свойства на образцах диаметром 12X6X150 мм согласно ГОСТу 1497-73.

Для сравнения эффекта модифицирования при вводе в жидкий металл неорганических соединений углерода и фосфора были проведе­ны аналогичные исследования с использованием известных способов модифицирования: ультразвука и введения Alphosita.

Ультразвуковая обработка проводилась с частотой (18-20) 10 3 Гц при разных температурах и продолжительности. В табл. 2 приведены лучшие результаты по модифицированию для всех способов обработки, а па рис. показаны структуры, составляющие которых меняются по величине.

Рис. Структуры сложнолегированного Al-сплава [Х200): а - немодифицирован; б - модифицирован фосфористой медью; в - модифицирован кар­бидом железа; г - обработан комплексным модификатором

Модификатор Alphosit вводился согласно рекомендации 0,2% от массы сплава. Исследования показали, что применение ультразвуковой обработки независимо от частоты колебаний приводит к росту структур­ных составляющих, особенно фазы А (кремний). Модификатор Alphosit измельчает фазы А и Д и не меняет размеры других фаз. Фосфористая медь уменьшает размеры фаз А и Д, не затрагивая другие фазы. Хоро­шие результаты по степени измельчения всех фазовых составляющих дает введение алюминия фосфорнокислого-пиро [Аl(Р 2 O 2 )3], хотя ме­ханические свойства получаются ниже, т. к. происходит увеличение не­металлических включений в сплаве.

Введение карбидов Ni 3 C и Fe 3 C положительно влияет на все пока­затели, по которым оценивался эффект модифицирования сплава.

При концентрации одного из этих элементов в сплаве в количестве недостаточном для получения полного эффекта модифицирования и необходимости увеличения продолжительности эффекта рекомендуется использовать неорганические соединения в комплексе с фосфористой медью и фосфорнокислым алюминием со следующей оптимальной кон­центрацией компонентов: фосфористой меди -40%, алюминия фосфор­нокислого - 15%, карбида железа - 45% . Количество модифика­тора составляет 1 -1,5% от массы металла.

Изменение концентрации одного из компонентов модификатора не увеличивает среднюю степень измельчения. Так, введение более 15% А1 4 (Р 2 07)з приводит к ощутимому увеличению неметаллических включе­ний, снижающих механические свойства сплава. Карбид железа может быть заменен на карбид Ni 3 C или карбид металла, который отвечает вначале описанным требованиям, предъявляемым к модификаторам.

Введение комплексного модификатора можно осуществлять двумя путями и в два этапа. Вначале с шихтой загружаются карбиды и фосфо­ристая медь, затем алюминий фосфорнокислый колокольчиком вводится в жидкий расплав, фосфористая медь загружается с шихтой, а карбид и алюминий фосфорнокислый вводятся в жидкий сплав.

Изменение порядка ввода комплексного модификатора в сплав отражается на длительности сохранения эффекта модифицирования, и первый способ от второго отличается по длительности на 30 мин. Если, модификаторы вводятся в жидкий металл, то для выравнивания их концентрации по всему объему необходимо интенсивное перемешивание и выдержка 15-20 мин. перед разливкой. Наилучший эффект по моди­фицированию получен при загрузке в виде кусков соединений металла с фосфором и углеродом. Ввод их в порошкообразном состоянии при­водит к увеличению газосодержания.

Время сохранения эффекта модифицирования определено до нача­ла роста размеров структурных составляющих сплава на шлифах, полу­ченных при взятии проб через каждые 15 мин. Наибольшая продолжи­тельность сохранения эффекта модифицирования соответствует исполь­зованию комплексного модификатора. При переплаве эффект модифи­цирования не сохраняется.

Следовательно, введение неорганических соединений фосфора и уг­лерода в высококремнистые алюминиевые сплавы позволяет получить, мелкую дисперсную структуру, повысить физико-механические свойства при сохранении специальных эксплуатационных свойств сплавов.

ЛИТЕРАТУРА

  1. Колобнев И. Ф. и др. Модификатор для жаропрочных сплавов. Авт. свид. СССР, № 186693. Бюллетень изобр., 1966, № 19, с. 110.
  2. Косолапова Т. Я- Карбиды.- М.: Металлургия, 1968.
  3. Тимофеев Г. И. и др. Модификатор для заэвтектических силуминов. Авт. свид, СССР, №718493. Бюллетень изобр. 1980, № 8. с. 106.
  4. Стальные слитки — http://steelcast.ru/
  5. Мальцев М. В., Барсукова Т. А., Борин Ф. А. Металлография цветных металлов и сплавов. М.: Металлургиздат, 1960.
  6. Тот Л. Карбиды и нитриды переходных металлов. М.: Мир, 1974.

Некоторые сплавы при нормальной кристаллизации имеют в отливках пониженные механические свойства в результате образования грубой, крупнозернистой макро- или микроструктуры. Этот недостаток устраняется введением в расплав перед заливкой небольших присадок специально подобранных элементов, которые называют модификаторами.

Модифицированием (видоизменением) называют операцию введения в жидкий металл добавок, которые, существенно не меняя химического состава сплава, воздействуют на процессы кристаллизации, измельчают структуру и заметно повышают свойства литого материала. Модифицирующие присадки могут либо измельчать макрозерно, либо микроструктуру, или воздействовать одновременно на обе эти характеристики. К модификаторам можно отнести также специальные присадки, добавляемые в металлы для перевода нежелательных легкоплавких составляющих в тугоплавкие и менее вредные соединения. Классическим примером модифицирования является модифицирование доэвтектических (до 9% Si) и эвтектических (10-14% Si) силуминов присадками натрия в количестве 0,001-0,1%.

Литая структура немодифицированных силуминов состоит из дендритов α-твердого раствора и эвтектики (α + Si), в которой кремний имеет грубое, игольчатое строение. Отсюда эти сплавы имеют невысокие свойства, особенно пластичность.

Введение в силумины небольших добавок натрия резко измельчает выделение кремния в эвтектике и делает тоньше ветви дендритов α-раствора.

Механические свойства при этом значительно возрастают, улучшаются обрабатываемость резанием и восприимчивость к термообработке. Натрий вводят в расплав перед заливкой либо в виде металлических кусочков, либо с помощью специальных солей натрия, из которых натрий переходит в металл в результате обменных реакций солей с алюминием расплава.

В настоящее время для этих целей применяют так называемые универсальные флюсы, которые одновременно выполняют рафинирующее, дегазирующее и модифицирующее воздействие на металл. Составы флюсов и основные параметры обработки будут подробно приведены при описании технологии плавки алюминиевых сплавов.

Количество натрия, необходимого для модифицирования, зависит от содержания в силумине кремния: при 8-10% Si необходимо 0,01% Na, при 11 - 13% Si - 0,017-0,025% Na. Избыточные количества Na (0,1-0,2%) противопоказаны, так как при этом наблюдается не измельчение, а, наоборот, огрубление структуры (перемодифицирование) и свойства резко ухудшаются.

Эффект модифицирования сохраняется при выдержке перед заливкой в песчаные формы до 15-20 мин, а при литье в металлические формы - до 40-60 мин, так как при длительной выдержке натрий испаряется. Практический контроль модифицирования осуществляется обычно по внешнему виду излома литой цилиндрической пробы по сечению, эквивалентному толщине отливки. Ровный мелкозернистый, сероватошелковистый излом говорит о хорошем модифицировании, а грубый (с видимыми блестящими кристалликами кремния) излом свидетельствует о недостаточном модифицировании. При литье силуминов, содержащих до 8% Si, в металлические формы, способствующие быстрой кристаллизации металла, введение натрия необязательно (или его вводят в меньших количествах), так как в таких условиях структура получается мелкозернистой и без модификатора.

Заэвтектические силумины (14-25% Si) модифицируют присадками фосфора (0,001-0,003%), которые измельчают одновременно первичные выделения свободного кремния и кремний в эвтектике (α + Si). Однако при литье следует учитывать, что натрий придает и некоторые отрицательные свойства расплаву. Модифицирование вызывает снижение жидкотекучести сплавов (на 5-30%). Натрий увеличивает склонность силуминов к газонасыщению, вызывает взаимодействие расплава с влагой формы, что затрудняет получение плотных отливок. Вследствие изменения характера кристаллизации эвтектики происходит видоизменение усадки. В немодифицированном эвтектическом силумине объемная усадка проявляется в виде концентрированных раковин, а в присутствии натрия - в виде мелкой рассеянной пористости, что затрудняет получение плотных отливок. Поэтому на практике необходимо вводить в силумины минимально необходимые количества модификатора.

Примером измельчения первичного макрозерна (макроструктуры) сплавов добавками может служить модифицирование магниевых сплавов. Обычная немодифицированная литая структура этих сплавов грубозернистая с пониженными (на 10-15%) механическими свойствами. Модифицирование сплавов МЛ3, МЛ4, МЛ5 и МЛ6 производится путем перегрева сплава, обработкой хлорным железом или углеродсодержащими материалами. Наиболее распространенным является модифицирование углеродсодержащими добавками -магнезитом или углекислым кальцием (мелом). При модифицировании сплава мел или мрамор (мел в виде сухого порошка, а мрамор в виде мелкой крошки в количестве 0,5-0,6% от массы шихты) с помощью колокольчика в два-три приема вводят в расплав, нагретый до 750-760°.

Под действием температуры мел или мрамор разлагаются по реакции

СаСO 3 СаО + СO 2

Выделяющийся CO2 взаимодействует с магнием по реакции

3Mg + СO 2 → MgO + Mg(С) .

Выделяющийся углерод, или карбиды магния, как считают, облегчает кристаллизацию из многих центров, это приводит к измельчению зерна.

Практика воздействия модификаторов на другие сплавы показала, что повышение свойств благодаря измельчению литого первичного зерна наблюдается только в том случае, если одновременно измельчается микроструктура сплава, так как форма и количество составляющих микроструктуры в значительной мере определяют прочностные свойства материала. Влияние модификаторов зависит от их свойств и количества, типа модифицируемых сплавов, скоростей кристаллизации отливки. Например, введение циркония в количестве 0,01-0,1% в оловянные бронзы сильно измельчает первичное зерно сплава. При 0,01-0,02% Zr заметно повышаются механические свойства оловянных бронз (у БрОЦ10-2 θ b и δ возрастают на 10-15%). С увеличением количества модификатора выше 0,05% сильное измельчение макрозерна сохраняется, однако свойства резко падают в результате укрупнения микроструктуры. Этот пример показывает, что для каждого сплава существуют свои оптимальные количества модификаторов, которые способны оказывать благоприятные действия на свойства, а всякое отклонение от них не дает желательного положительного эффекта.

Модифицирующее действие присадок титана на обрабатываемые алюминиевые сплавы типа дюралюминий (Д16) и другие проявляется лишь при значительных скоростях затвердевания. Например, при обычных скоростях затвердевания полунепрерывного литья слитков модифицирующие добавки титана измельчают литое зерно, но не изменяют его внутреннего строения (толщину осей дендритов) и в конечном счете не влияют на механические свойства. Однако, несмотря на это, присадку титана применяют, так как мелкозернистая литая структура уменьшает склонность сплава к образованию трещин при литье. Эти примеры свидетельствуют о том, что название «модифицирование» нельзя понимать как всеобщее повышение свойств материала. Модифицирование - это конкретная мера для устранения того или иного неблагоприятного фактора в зависимости от природы сплава и условий литья.

Неодинаковая природа воздействия малых добавок модификаторов на структуру и свойства различных сплавов и влияние на процесс модифицирования многих внешних факторов в известной мере объясняют отсутствие в настоящее время общепринятого единого объяснения действия модификаторов. Например, существующие теории модифицирования силуминов можно разделить на две основные группы - модификатор изменяет либо зарождение, либо развитие кристаллов кремния в эвтектике.

В теориях первой группы предполагается, что зародыши кремния, выделяющиеся из расплава при кристаллизации, дезактивируются из-за адсорбции натрия на их поверхности, или на поверхности первичных кристаллов алюминия. В теориях второй группы учитывается очень малая растворимость натрия в алюминии и кремнии. Предполагается, что из-за этого натрий скапливается в слое жидкости, окружающем кристаллы кремния при затвердевании эвтектики, и тем самым затрудняет их рост вследствие переохлаждения. Установлено, что в модифицированном сплаве эвтектика переохлаждается на 14-33°. Эвтектическая точка при этом сдвигается с 11,7% до 13-15% Si. Однако точка плавления эвтектики при нагревании после кристаллизации в модифицированном и немодифицированном сплаве одинакова. Это говорит о том, что имеет место истинное переохлаждение, а не простое понижение точки плавления от добавки модификатора. Действительно, факты измельчения эвтектики силумина при литье в кокиль и быстром охлаждении говорят о том, что это может быть только следствием возрастающего переохлаждения и повышенной скорости затвердевания, при которой диффузия кремния на большие расстояния невозможна. Вследствие переохлаждения кристаллизация протекает очень быстро, из многих центров, благодаря этому образуется дисперсная структура.

В некоторых случаях считают, что натрий уменьшает поверхностную энергию и межфазовое натяжение на границе алюминий-кремний.

Модифицирование литого зерна (макро) связывают с образованием в расплаве перед кристаллизацией или в момент кристаллизации многочисленных центров кристаллизации в виде тугоплавких зародышей, состоящих из химических соединений модификатора с компонентами сплава и имеющих параметры структурной решетки, подобные структуре модифицируемого сплава.

Изобретение относится к металлургии, в частности к литейному производству, может быть использовано для получения отливок из алюминиевых сплавов общемашиностроительного назначения. Цель: путем введения новых компонентов и изменения соотношения компонентов модифицирующей смеси для обработки расплава получить отливки повышенной герметичности при высокой прочности и пластичности. Сущность изобретения: после расплавления шихты в расплав вводится модифицирующая смесь, содержащая карбидо-, нитридообразующие элементы и сумму окислов алюминия и меди в соотношении 30 - 70: 0,1 - 0,5 и щелочные и/или щелочно-земельные металлы и их соединения. Модифицирующая смесь вводится в количестве 0,02 - 0,20 мас.% шихты. Соотношение окислов алюминия и меди составляет 100: 0,01 - 0,98. 2 з.п.ф-лы, 2 табл.

Изобретение относится к металлургии, более точно к литейному производству, и может быть использовано для получения отливок из сплавов на основе алюминия повышенного качества, особенно высокой герметичности. Для получения отливок из сплавов на основе алюминия повышенного качества применяют рафинирование и модифицирование с использованием различных газов и сложных по своему составу модификаторов. Это усложняет и удорожает технологию, не позволяет оптимизировать весь комплекс физико-механических характеристик и ухудшает технологичность. Известны следующие способы модифицирования алюминиевых сплавов. Способ получения сплавов системы алюминий-титан-бор предусматривает модифицирование фторидами щелочных металлов титана и бора, к которым добавлено 2-10% от массы фторидов порошкового окисла алюминия (Заявка Япония N 55-51499, кл. C 22C 1/02). Данное изобретение обеспечивает повышение прочностных характеристик отливок, однако герметичность отливок недостаточна, способ не экономичен. Известен способ модифицирования сплава алюминий-титан, который включает введение в расплав бора в виде ультрадисперсного порошка гексаборида лантана (авт. св. N 1168622, кл. C 22 C 1/06, 1983). Способ обеспечивает улучшение модифицирующего эффекта при снижении стоимости, но герметичность отливок неудовлетворительна. Известен способ обработки заэвтектических силуминов, заключающийся в модифицировании смесью, которая включает, мас.%: фосфор 7-13, медь 45-70, сумма железа и хлора 2,5-8, остальное отходы производства фосфора, содержащие натрий, калий, кальций, кремний, кислород (авт. св. N 687853, кл. C 22 C 1/06, 1977). Недостатком данного способа является низкая пластичность и герметичность отливок в связи с повышенным содержанием меди и фосфора. Известен способ получения отливок из алюминиевых сплавов, включающий использование для модифицирования расплава ультрадисперсных порошков сфен-циркона (смесь оксидов циркония, ниобия и титана) (см. ж-л "Литейное производство", N 4, 1991 г., стр. 17). Данный способ обеспечивает повышение прочности и пластичности отливок, однако герметичность их остается на неудовлетворительном уровне, так как использованные в этом техническом решении оксиды и продукты их взаимодействия практически полностью локализуются внутри зерен (субзерен) и не оказывают благоприятного влияния на состояние границ зерен. Наиболее близким по технической сущности и решаемой задаче является способ рафинирования и модифицирования алюминиевых сплавов, включающий обработку расплава смесью солей фтористого калия и хлористого калия совместно с фтористым натрием и/или натриевым криолитом в количестве 2-3% от веса расплава (авт. св. N 899698, кл. C 22 C 1/06, 1982. Данный способ упрощает технологию и снижает затраты на рафинирование и модифицирование, однако герметичность отливок остается низкой, так как не происходит интенсивного измельчения зерна, поскольку реализуется механизм модифицирования II рода, т.е. за счет торможения роста зерен, а не увеличения количества центров кристаллизации. В основу изобретения положена задача: путем использования для модифицирования сплавов на основе алюминия нового набора компонентов по составу и концентрации, получить отливки, обладающие высокой герметичностью при сохранении повышенной прочности и пластичности. Задача решена таким образом, что в предлагаемом способе модифицирования алюминиевых сплавов, включающем расплавление шихты и введение модифицирующей смеси, в качестве модифицирующей используют смесь карбидо- и нитридообразующих элементов, суммы оксидов алюминия и меди в соотношении элементов и оксидов 30-70:0,1-0,5 и щелочных и/или щелочно-земельных металлов и их соединений в количестве 0,02-0,20% от массы шихты. В качестве карбидо- и нитридообразующих элементов используют оксиды циркония, титана, ниобия, гафния, тантала. В качестве щелочных и/или щелочноземельных металлов и их соединений используют криолит. Соотношение оксидов алюминия и меди составляет 100:0,01-0,98. Сопоставительный анализ с известными техническими решениями (аналоги и прототип) позволяет сделать вывод о том, что заявленный способ модифицирования алюминиевых сплавов отличается тем, что: в качестве модифицирующей смеси используют карбидо-и нитридообразующие элементы, оксиды алюминия и меди, щелочные и/или щелочно-земельные металлы и их соединения; компоненты: карбидо-и нитридообразующие элементы и сумму оксидов алюминия и меди берут в соотношении 30-70:0,1-0,5, щелочные и/или щелочно-земельные металлы и их соединения - остальное; модифицирующую смесь вводят в количестве 0,02-0,20% от массы шихты; оксиды алюминия и оксиды меди берут в соотношении 100:0,01-0,98. Некоторые компоненты - карбидо-и нитридообразующие элементы, оксиды алюминия, щелочные и щелочно-земельные металлы и их соединения - известны из существующего уровня техники (аналоги и прототип), однако в предлагаемом техническом решении они вводятся в составе других компонентов (новый качественный состав) и в других соотношениях (новое количественное соотношение). Высокий эффект модифицирования смесью карбидо-и нитридообразующих элементов, суммы оксидов алюминия и меди, щелочных и/или щелочно-земельных металлов и их соединений объясняется тем, что в расплаве на основе карбидо-и нитридообразующих элементов после диссоциации оксидов образуются интерметаллиды коллоидальной дисперсности типа Al x Me y , которые в процессе кристаллизации обеспечивают измельчение структуры металла, аналогично действует часть окислов алюминия, близких по составу к стехиометрическому. Большую роль в формировании структуры, субмикроструктуры и, как следствие, комплекса физико-механических, технологических и эксплуатационных свойств отливок и сплавов на основе алюминия играют соединения меди: во-первых, оксиды силициды и, частично, сульфиды меди, которые образуются в расплаве, ответственны за существенное измельчение структуры, при этом ликвидус смещается в сторону более высоких температур, возрастает динамика кристаллизации - многие нежелательные включения в весьма дисперсном виде локализуются внутри измельченных зерен, Во-вторых, соединения меди типа CuAl 2 и более сложные по составу, выделяются из твердого раствора по границам зерен. В связи со значительным увеличением площади межзеренной поверхности из-за измельчения зерен и равномерной локализацией этих дисперсных выделений обеспечивается снижение концентрации напряжений с одновременным ростом плотности, герметичности отливки в целом. Введение модифицирующей смеси менее 0,02 мас.%. шихты не дает должного эффекта по уровню герметичности и другим характеристикам, а выход за верхний предел 0,20 мас.% шихты приводит к снижению пластичности отливок. Пределы соотношения компонентов модифицирующей смеси определяются следующими соображениями: при соотношении карбидо- и нитридообразующих элементов и суммы оксидов алюминия и меди менее 30:0,5 - количество центров кристаллизации оказывается недостаточным, чтобы обеспечить должный уровень свойств отливок; при превышении соотношения более 70:0,1 - сплав охрупчивается из-за чрезмерного количества межзеренных включений. Наряду с потерей пластичности снижается и герметичность, так как возрастает несплошность в околограничных зонах. При соотношении оксидов алюминия и оксидов меди больше, чем 100:0,01 влияние вторичных фаз резко уменьшается, так как оксиды и другие соединения меди целиком реализуются в виде включений, образующихся в расплаве, выше ликвидуса и не оказывают положительного воздействия на структуру и свойства отливок, а, если это соотношение меньше, чем 100:0,98 - количество вторичныф фаз, локализующихся по границам зерен, возрастает настолько, что появляются несплошности в местах выделений и герметичность таких отливок падает. П р и м е р. В вигель 250- и килограммовой печи сопротивления ЭСТ-250 в соответствии с расчетом шихты загружали компоненты для получения алюминиевого сплава АК7ч (АЛ9). После расплавления шихты и доводки расплава по химсоставу, расплав при температуре 650-780 о С обрабатывают модифицирующей смесью, вводя ее под "колокольчиком" максимально близко к дну тигля. Обработку проводят до окончания барботажа, после чего "колокольчик удаляют и снимают шлак с поверхности расплава. Таким способом выплавлялась серия плавок, в которых варьировалось количество вводимой модифицирующей смеси и ее состав. Для сравнения одну из плавок модифицировали флюсом в количестве 2,5 мас. % шихты, приготовленным из измельченной обезвоженной смеси фтористого калия с хлористым калием в соотношении 2:3 по массе, а также фтористого натрия и натриевого криолита в равных долях. Флюс наносился на поверхность расплава при температуре последнего 720-740 о С и перемешивался с металлом; после выдержки 10-15 мин шлак удаляли. Полученный сплав имел химический состав, мас.%.: маpганец 0,46-0,52; медь 0,18-0,21; цинк 0,28-0,32; магний 0,2-0,4; железо 1,2-1,8, свинец 0,03-0,05; олово 0,008-0,012; кремний 6,2-7,6; алюминий остальное. Испытания механических свойств проводились на образцах, изготовленных из слитков, полученных в металлической форме, по стандартным методикам. Гидроиспытания проводились при давлении 5 кГс/см 2 на деталях типа "колесо насосное", полученных методом литья под давлением. Результаты испытаний образцов и отливок из сплава АК7ч (АЛ9) после различных вариантов модифицирования приведены в табл. 1 и 2. Анализ полученных результатов показывает, что образцы и отливки деталей, модифицированные заявленным способом, при высокой прочности и пластичности обладают существенно более высокой плотностью, а в деталях - герметичностью. Если по сравнению со способом-прототипом, заявленный способ повышает герметичность отливки более чем в два раза; по сравнению с серийной технологией - в четыре-шесть раз. Предлагаемый способ может быть использован в литейных цехах машиностроительных заводов и специализированных производств отливок из алюминиевых сплавов с повышенными требованиями к герметичности.

Формула изобретения

1. СПОСОБ МОДИФИЦИРОВАНИЯ АЛЮМИНИЕВЫХ СПЛАВОВ, включающий расплавление шихты и введение в расплав модификатора в присутствии криолита, отличающийся тем, что в качестве модификатора используют смесь карбидо-, нитридообразующих элементов и оксиды алюминия и меди при соотношении элементов и оксидов 30 - 70: 0,1 - 0,5 и щелочных и/или щелочноземельных металлов и их соединений в количестве 0,02 - 0,20% от массы сплава, причем соотношение оксидов алюминия и меди составляет 100: 0,01 - 0,98. 2. Способ по п.1, отличающийся тем, что в качестве карбидо-, нитридообразующих элементов используют оксиды циркония, титана, ниобия, гафния, тантала по отдельности или в любом сочетании. 3. Способ по п.1, отличающийся тем, что в качестве щелочных и/или щелочноземельных металлов и их соединений используют криолит.

Подразумевают специальную обработку расплава, чтобы получить мелкозернистый эвтектический кремний в литой структуре. Такая структура повышает механические свойства отливки, в том числе, относительное удлинение, а также во многих случаях - литейные свойства алюминиевого расплава. Как правило, модифицирование силумина производят путем добавления малых количеств натрия или стронция.

Сущность модифицирования

Сущность модифицирования силуминов - влияние содержания натрия на возможные формы эвтектического кремния в силумине Al Si11 - представлена на рисунках 1-4.

Рисунок 1 - Пластинчатая структура эвтектического кремния.

Условия для формирования пластинчатого кремния возникают в литейных сплавах при полном отсутствии фосфора или модифицирующих добавок, например, натрия или стронция.

Рисунок 2 - Гранулярная структура эвтектического кремния.

Условия для формирования гранулярной структуры эвтектического кремния возникают при наличии фосфора, но без натрия или стронция. Кристаллы кремния существуют в виде грубых зерен или пластин.

А)
б)
Рисунок 3 - а) «Недомодифицированная» структура эвтектического кремния;
б) Модифицированная структура эвтектического кремния.

В «недомодифицированном» и в большей степени в модифицированном микроструктурном состоянии, например, с добавками натрия или стронция, гранулы значительно снижаются в размерах, получают скругленную форму и равномерно распределяются. Все это благоприятно сказывается на пластических свойствах материала, в частности, на величине относительного удлинения.

Рисунок 4 – «Перемодифицированная» структура.

В случае «перемодифицирования», например, чрезмерного содержания натрия, в структуре появляются веноподобные ленты с грубыми кристаллами кремния. Это означает ухудшение механических свойств силумина.

Модифицирование силуминов натрием

В силуминах с содержанием кремния более 7 % эвтектический кремний занимает большую часть площади металлографического образца. При содержании кремния от 7 до 13 % тип эвтектической структуры, например, зернистый или модифицированный, значительно влияет на механические свойства материала, в частности, на пластичность или на относительное удлинение. Поэтому, когда при испытании образца необходимо получить более высокое относительное удлинение, алюминиевые сплавы с содержанием кремния от 7 до 13 % подвергают модифицированию путем добавления приблизительно 0,0040-0,0100 % натрия (40-100 ррм).

Модифицирование силуминов стронцием

В силуминах с содержанием кремния около 11 %, особенно для , в качестве долговременного модификатора применяют стронций. Отличие стронция от натрия как модификатора в том, что он значительно меньше выгорает из расплава, чем натрий. Стронция добавляют в количестве 0,014-0,040 % (140-400 ррм). Модифицирование стронцием обычно проводят на стадии производства чушек из соответствующих сплавов, поэтому на литейном предприятии модифицирование уже не производят. При низких скоростях охлаждения отливок модифицирование стронцием значительно менее эффективно и поэтому оно не рекомендуется к применению, например, при литье в песчаные формы.

Особенности обработки модифицированных расплавов

Чтобы избежать выгорания стронция все обработки расплава, в том числе дегазацию, ведут без применения хлорсодержащих материалов, а с использованием, например, аргона или азота. Модификация стронцием не пропадает даже при переплаве возвратного металла, например, прибыльных частей отливок. При необходимости потери стронция восполняют добавками лигатуры, содержащей стронций, согласно инструкции поставщика исходных чушек из модифицированного сплава.

Повторное модифицирование силуминов

Поскольку натрий выгорает из расплава относительно быстро, последующее модифицирование силуминов натрием должно производиться на литейном предприятии через определенные интервалы. В расплавах, модифицированных натрием, во всех операциях над расплавом не должны применяться материалы, содержащие хлор. Хлор реагирует со стронцием и натрием, выводит их из расплава и, тем самым, препятствует его модифицированию.

На начальном этапе развития алюминиевых сплавов было отмечено, что малые примеси или специальные добавки титана (сотые или десятые доли процента) резко измельчают зерно литого алюминия. В 1914 г. К. Ширмайстер опубликовал статью, в которой показал благоприятное воздействие малых добавок титана на структуру излома небольших слитков алюминия. Эффект измельчения зерна литого алюминия введением специальных добавок был назван модифицированием.

В широко развернувшихся далее работах по модифицированию алюминиевых сплавов было установлено, что, помимо титана, зерно алюминия измельчают при кристаллизации малые добавки цинка, вольфрама, молибдена, бора, рения, тантала, гафния, ванадия, скандия, стронция и гораздо в меньшей степени - железа, никеля, хрома, марганца.

В связи с большой важностью поверхностных явлений в процессах модифицирования исследователи пытались определить критерии поверхностной активности, которые позволили бы сделать выбор модификаторов, необходимых для заданного изменения структуры.

На основе экспериментов А.М. Корольков в качестве критерия выдвинул соотношение атомных объемов добавки У д и растворителя V p . Если У д > У р, то добавка поверхностно активна. На основании этого критерия им получены данные об оценке активности тех или иных добавок к алюминию при концентрации, начиная от тысячных и сотых долей процента до 10-20 %. Показано, что поверхностно активны по отношению к алюминию литий, кальций, магний, олово, свинец, сурьма и висмут. Легирование алюминия медью, хромом, германием и серебром не привело к заметному изменению поверхностного натяжения.

В.Н. Елагиным доказано, что измельчение зерна алюминия при кристаллизации является результатом особого взаимодействия переходных металлов с алюминием .

В табл. 1.3 приведены результаты, иллюстрирующие влияние наиболее сильных модификаторов (титана, тантала, бора, цинка) при литье в кокиль алюминия А99.

Таблица 1.3

Результаты влияния наиболее сильных модификаторов

По мнению В.И. Напалкова и С.В. Махова , структура чистого алюминия и его сплавов зависит от многих параметров, которые можно условно разделить на две группы. Первая группа параметров определяется физико-химическими свойствами тугоплавких частиц-модификаторов. В совокупности эти свойства выражаются химической природой, структурным, размерным и адсорбционным факторами. Ко второй группе следует отнести температурно-временной режим плавки и литья сплавов, концентрацию модификатора, скорость охлаждения слитка и размер частиц интерметалл и дов.

По механизму воздействия на кристаллизацию расплава все модификаторы делят на два класса: зародышевого и поверхностно-активного действия, причем для измельчения зерна наиболее важны модификаторы первого класса.

Идеальным модификатором является частица, удовлетворяющая следующим требованиям: должна эффективно измельчать зерно при минимальной концентрации; в расплаве быть в термически стабильном и дисперсном состоянии; иметь минимальное структурное различие с решеткой модифицирующего сплава; не терять своих модифицирующих свойств при переплавках. Ни один из модификаторов, известных в настоящее время, не обладает полным набором этих свойств.

В работе представлен следующий механизм модифицирования алюминия и его сплавов. При введении в расплав алюминия элемента- модификатора происходят флуктуационные явления, в результате чего образуется дозародыш, формирование которого обусловлено наличием взвешенных частиц типа оксида алюминия, карбида титана и других размером менее 1-2 мкм. Флуктуационные явления возникают в результате термического переохлаждения расплава, величина которого определяется видом элемента- модификатора. Чем больше величина термического переохлаждения, тем больше число флуктуаций, и тем большее количество присутствующих в расплаве примесей становятся активированными. Модифицирующая способность элементов определяется взаимодействием их валентных электронов с валентными электронами алюминия. Это взаимодействие обусловлено способностью валентных электронов двух атомов коллективизировать с образованием электронного газа, определяемого потенциалом ионизации.

Большинство авторов отмечают, что при добавке 0,10-0,15 % Ti в алюминий высокой чистоты и 0,07 % Ti в алюминий технической чистоты, отливаемый при температурах 690-710 °С, достигается заметное модифицирование. Особенно сильное измельчение зерна наблюдается при введении 0,20 % Ti и более.

В работе рассматривается влияние бора на измельчение зерна, но в основном добавку бора применяют для алюминия, используемого в электротехнической промышленности. Р. Кисслинг и Дж. Валл ас отмечают, что при температуре расплава 690-710 °С наиболее эффективна добавка 0,04 % В непосредственно перед разливкой .

В деформируемых сплавах систем Al-Mg и А1-Мп добавка 0,07 % Ti обеспечивает получение мелкозернистой структуры в слитках, отливаемых непрерывным методом, и мелкозернистой рекристаллизованной структуры на листах .

М.В. Мальцев с сотрудниками обнаружили наибольшее измельчение зерна в слитках алюминиевых деформируемых сплавов при концентрации титана 0,05-0,10 %. Полученная зависимость измельчения зерна алюминия от концентрации титана была объяснена ими характером диаграммы состояния алюминий - титан. Анализ этой зависимости показал, что на кривой «число зерен - добавка» появляется характерный перегиб, положение которого связано с образованием кристаллов TiAl 3 при концентрации титана больше 0,15 %. Наиболее сильное действие на структуру алюминия наблюдается при концентрациях титана 0,15-0,30 %. При содержании титана меньше 0,15 % измельчение зерна алюминия практически очень мало. Это связано с неравномерным распределением добавок в макрообъемах жидкого сплава. При концентрации титана больше 0,30 % происходит небольшое измельчение, а при концентрации 0,70 % и выше - укрупнение зерна алюминия. В полуфабрикатах из модифицированных алюминиевых сплавов из-за устранения зональности в структуре механические свойства сглаживаются, а их значения повышаются на 10-20 % по сравнению с полуфабрикатами из ^модифицированных сплавов. Как установили М.В. Мальцев с сотрудниками, мелкозернистая структура отливки алюминия получается при введении 0,05-0,10 % В. Наиболее сильное измельчение зерна алюминия наблюдается при добавке 0,20 % В, а при дальнейшем увеличении концентрации бора зерно вновь укрупняется.

Добавка бора в количестве 0,05-0,10 % в сплав В95 значительно уменьшает размер зерна в слитках, при этом предел прочности полуфабрикатов с добавкой бора на 15-20 МПа выше по сравнению с полуфабрикатами из ^модифицированных слитков. Введение бора в большем, чем указано, количестве приводит к резкому уменьшению пластичности полуфабрикатов из сплава В95.

Первые эксперименты по измельчению зерна алюминиевых сплавов совместными добавками титана и бора были проведены А. Кибулой и его коллегами из Британской ассоциации по исследованию цветных металлов . В этой работе для получения оптимального эффекта модифицирования рекомендованы следующие концентрации: 0,01-0,03 % Ti и 0,003-0,010 % В. Так как чистый алюминий не содержит примесей, то его труднее всего модифицировать. Фирма «Кавекки» рекомендует вводить в чистый алюминий 0,0025-0,0075 % Ti и 0,0005-0,0015 % В, а в алюминиевые деформируемые сплавы 0,003-0,015 % Ti и 0,0006-0,0003 % В. С увеличением размера слитка добавка лигатуры должна быть повышена. Лигатуру необходимо вводить только в первичный алюминий и присаживать в расплав за 15-20 мин до начала литья.

В основу процесса модифицирования А. Кибула и позднее М.В. Мальцев при изучении измельчения зерна в слитках алюминиевых сплавов добавками титана и совместно титана и бора положили теорию за- родышеобразования. Как было установлено, при кристаллизации сплавов без добавок титана происходит переохлаждение, величина которого достигает 1-2 °С, тогда как при введении 0,002-0,100 % Ti переохлаждения не наблюдается. При этом по сечению слитка получается мелкозернистая структура. Все это дало основание считать, что зерно измельчается из-за наличия зародышей, на которых начинается кристаллизация расплава . Такими частицами могут быть карбиды, бориды и алюминиды переходных металлов, имеющие параметры решетки, соответствующие параметру решетки твердого раствора алюминия (4,04 А).

По мнению А. Кибулы , вводимая в качестве модификатора добавка должна удовлетворять следующим требованиям:

  • достаточная устойчивость в расплаве алюминия при высоких температурах без изменения химического состава;
  • температура плавления добавки выше точки плавления алюминия;
  • структурное и размерное соответствие решеток добавки и алюминия;
  • образование достаточно сильных адсорбционных связей с атомами модифицирующего расплава.

Критерием прочности этих связей, по-видимому, может служить поверхностное натяжение на границе расплав - твердая частица. Чем больше величина поверхностного натяжения, тем хуже смачивается частица жидкой фазой и тем меньше вероятность использования частицы в качестве центра кристаллизации. В работе на большом числе систем показано, что каталитическая активность подложки относительно зародышеобразо- вания определяется не величиной соответствия решеток, а химической природой подложки.

Изучая промышленную лигатуру А1-5ТМВ, выпускаемую фирмой «Кавекки», авторы работы пришли к выводу, что измельчение зерна алюминиевых сплавов связано с образованием частиц TiAl 3 вследствие структурного и размерного соответствия их решетки решетке твердого раствора алюминия. Кристаллы диборида титана и алюминида бора в процессе модифицирования не участвуют, как показали результаты электронномикроскопического анализа. Добавка бора в лигатуру алюминий - титан способствует образованию алюминида при концентрациях

Эксперименты показали, что максимальная степень модифицирования наблюдается при отношении концентрации титана к бору 5:1; при больших или меньших отношениях эффект модифицирования уменьшается . Очевидно, модифицирование протекает, когда преобладает алюминид титана, хотя и бориды могут быть зародышами при затвердевании алюминия. Основное отличие этих двух типов зародышей состоит в том, что затвердевание алюминия на алюминиде титана происходит без переохлаждения, тогда как для боридов необходимо некоторое переохлаждение.

Большинство исследователей утверждают, что эффект модифицирования определяется соотношением титана и бора. Так в работе это объясняется тем, что введение в расплав алюминия лигатуры, содержащей 2,2 % Ti и 1 % В, обеспечивает такой же эффект модифицирования, как и добавка лигатура с 5 % Ti и 1 % В. Но в лигатуре Al-2,2Ti-lB алюминид титана присутствует в небольшом количестве или отсутствует и основной составляющей является диборид титана, который служит зародышем при затвердевании алюминия. В лигатуре А1-5Ti-lB основной модификатор - алюминид титана, зародышем для которого служит диборид титана. Он может скапливаться вдоль фронта кристаллизации и растворять ограниченное количество алюминия. По мнению Д. Коллинса , алюминид титана и другие интерметалл иды, образующиеся в результате перитекти- ческой реакции, являются очень эффективными модификаторами и измельчают зерно даже при низких скоростях охлаждения.

Как указывает Дж. Морисо , большое влияние на процесс модифицирования оказывают скорость кристаллизации, наличие легирующих компонентов, которые расширяют интервал кристаллизации сплава и создают концентрационное переохлаждение, а также термическое переохлаждение в расплаве около поверхности раздела.

В работе изложен следующий механизм измельчения зерна. Перед фронтом кристаллизации расплав содержит достаточное количество первичных частиц TiB 2 , ZrB 2 и др. В лигатуре Al-Ti-B основным модификатором является частица TiB 2 , решетка которой по структуре и размеру похожа на решетку алюминия. Затвердевание алюминия на частицах дибо- рида титана возможно только при переохлаждении, равном 4,8 °С. Около борида титана образуется слой с повышенной концентрацией титана за счет его диффузии из борида. Образование слоя с повышенной концентрацией титана позволяет объяснить, почему отношение титана к бору в лигатуре превышает соответствующее стехиометрическое отношение в соединении TiB 2 . Размерный фактор между зародышем и основой сплава не является определяющим, по крайней мере для боридов.

Следует отметить противоречивость экспериментальных данных о переохлаждении расплава в присутствии модифицирующих добавок. В работе показано, что переохлаждение в сплавах алюминия с 0,3-0,8 % Ti составляет доли градуса. При этом сплавы с титаном, пересекающие перитек- тическую горизонталь, характеризуются большим переохлаждением, чем внеперитектические.

В работе проведено исследование влияния добавок титана на переохлаждение алюминия в объеме 10 мкм 3 при скорости теплоотвода 5-10 °С/мин. Добавка 0,025 % Ti уменьшила переохлаждение алюминия с 47 до 16 °С. На степень переохлаждения также значительно влияет объем расплава. Непосредственно измерять температуру переохлажденного расплава и регулировать скорость теплоотвода для получения воспроизводимых результатов В.И. Данилов рекомендует в объемах 0,25- 0,50 см 3 .

По мнению японского исследователя А. Оно , причиной измельчения первичных зерен является фактор, обусловливающий возникновение равноосных кристаллов. На примере сплава Al-Ti показано, что само по себе быстрое охлаждение не приводит к образованию равноосных кристаллов в зоне быстрого охлаждения. Для их образования необходимо перемешивать расплав. При этом рост кристаллов, осевших в процессе затвердевания на стенках кристаллизатора, приостанавливается. Вследствие переохлаждения и изменения концентрации раствора рост кристалла на стенке кристаллизатора ограничен, а у их основания действуют растягивающие напряжения. В результате кристаллы отделяются от стенок кристаллизатора, и образуется равноосная структура. А. Оно считает, что в измельчении зерен основную роль играет эффект обволакивания элементами модификатора оснований кристаллов, выросших на стенках кристаллизатора; это наблюдается и при введении модификаторов . Титан обволакивает основания кристаллов, чем ускоряет их отделение от стенок кристаллизатора, и является для алюминия примесью, которая избирательно захватывается растущими кристаллами. В результате наблюдается ликвация титана у оснований кристаллов, что и обусловливает обволакивание кристаллов и торможение их роста. Таким образом, в исследованиях замедление роста кристаллов объясняется ликвацией растворенных элементов в процессе затвердевания и перемешиванием расплава при затвердевании.

Имеется еще один оригинальный способ управления процессом кристаллизации, особенно толстостенных отливок, подробно разработанный применительно к литью стали . В этом случае резкого охлаждения расплава во всем объеме достигают вводом металлических порошков в струю металла в процессе разливки в изложницу или другую форму. При суспензионном затвердевании за счет резкого охлаждения расплава по всему объему развиваются большие скорости роста кристаллов из множества одновременно возникших центров кристаллизации. В этом случае наблюдается объемная кристаллизация слитка.

В последнее время суспензионную заливку применяют для устранения столбчатой структуры, осевой пористости, ликвации и горячих трещин в стальных отливках. Опробуют ее и как средство для улучшения структуры отливок из алюминиевых сплавов. При выборе микрохолодильников рекомендуется соблюдать принцип кристаллографического соответствия, т. е. материал микрохолодильников должен быть идентичен или близок по своим кристаллографическим характеристикам обрабатываемому сплаву. Для наибольшего эффекта необходимо, чтобы температура плавления микрохолодильников была близкой к температуре плавления обрабатываемого сплава.

Можно также вводить в головную часть слитка твердые тела одинакового с разливаемым сплавом состава, которые при расплавлении отбирают часть тепла жидкой лунки слитка. Е. Шейл достиг эффективного измельчения зерна алюминиевых сплавов за счет добавки проволоки или ленты определенной толщины в струю разливаемого сплава . К этому времени в нашей стране В.И. Даниловым был подробно изучен механизм измельчения зерна в слитках различных сплавов введением затравочного материала .

В.Е. Неймарк в 1940 г. для измельчения структуры слитка предложил применять затравку из того же металла, что и расплав . Затравку вводили в виде кусков или стружки в количестве 1-2 % в слабо перегретый расплав перед его разливкой в изложницу. Влияние затравки на структуру слитка зависит от температуры перегрева расплава, от тщательности замешивания затравки в расплав и от способа разливки. Чистые металлы труднее поддаются измельчению зерна при помощи затравки, чем сплавы. Важным обстоятельством является величина поверхностного натяжения на границе кристалл - расплав, поэтому чем меньше поверхностное натяжение, тем меньше величина работы образования кристаллического зародыша и тем больше вероятность получения мелкокристаллического слитка. Возможность применения затравки к тем или иным металлам и сплавам определяется степенью дезактивации примесей при перегреве расплава. Чем выше температура дезактивации, тем эффективнее воздействие затравки на структуру слитка. Для повышения температуры применялась затравка, содержащая небольшое количество элемента, модифицирующего структуру слитка: затравку изготовляли из алюминия с 0,5 % Ti. Использование такой затравки приводило к более значительному измельчению структуры алюминия, чем при применении затравки из титана.

Исследования по измельчению структуры сплава Д16 прутком того же состава показали, что при введении постоянного количества присаживаемого материала эффект измельчения зерна снижается с повышением температуры в интервале 670-720 °С . При более высоких температурах литья измельчение весьма незначительно. Увеличение количества присаживаемого материала усиливает измельчение зерна в той степени, в какой происходит снижение температуры литья. Эти результаты находятся в полном соответствии с развитыми Г.Ф. Баландиным представлениями о модифицирующем и затравочном действии обломков твердой фазы в кристаллизующемся сплаве.

Исследованиями, представленными в работах , убедительно показано наследственное влияние зеренной структуры слитков алюминиевых сплавов на структуру и свойства полуфабрикатов, изготовленных из них. Так как требования к качеству изделий из алюминиевых деформируемых сплавов жесткие, очень важно правильно оценивать целесообразность применения того или иного способа модифицирования и найти пути преодоления его негативных сторон. Большое разнообразие алюминиевых деформируемых сплавов и особенностей технологического процесса получения слитков, а также широкая номенклатура полуфабрикатов из этих сплавов требуют дифференцированного подхода к выбору способа модифицирования с учетом ограничений по содержанию примесей, разной склонности сплавов к образованию столбчатой структуры, выпадению первично кристаллизующихся интерметаллидов. Нередко в заводской практике приходится изыскивать возможности для устранения неоднородной или грубой равноосной структуры слитков. Нельзя считать решенным вопрос об оптимальной концентрации и целесообразности применения того или иного модификатора при литье слитков разного типоразмера. Кроме того, учеными ведется поиск новых материалов, обладающих высокой модифицирующей способностью и имеющих химический состав, близкий к модифицируемому сплаву. Такие материалы могут быть получены совмещенными методами литья и обработки металлов давлением. В частности, предложена технология для получения лигатурной ленты, используемой при модифицировании слитков алюминия с целью формирования в них мелкозернистой структуры . Данная технология заключается в применении совмещенного процесса высокоскоростной кристаллизации и горячей пластической деформации получаемой заготовки, в результате чего достигается дополнительное дробление частиц интерметаллидов, образующихся при кристаллизации. Кроме того, обеспечиваются условия для формирования тонкодифференцированных субзеренных структур основы лигатурной полосы (прутка, ленты), представляющей дополнительный модифицирующий эффект.

Согласно известным данным, наиболее мелкое зерно алюминия 0,13- 0,20 мм (соответственно, число зерен на площади 1 см 2 шлифа - 6000 и 2300) достигается при использовании для модифицирования лучшей до настоящего времени прутковой лигатуры Al-Ti-B фирмы «Кавекки». Существенным преимуществом микроструктуры опытной лигатуры из сплавов системы Al-Ti-B, по сравнению с прутковой лигатурой фирмы «Кавекки», явилось преобладание глобулярной морфологии частиц TiAl 3 с меньшими размерами и значительно более однородным распределением этих частиц по объему алюминиевой матрицы. Имеющиеся в структуре отдельные частицы пластинчатой формы фрагментированы на блоки, размер которых не превышает 10 мкм. Это преимущество подтверждается анализом тонкой структуры опытной лигатурной ленты (размер субзерен в поперечном сечении составил от 0,17 до 0,33 мкм, а размер частиц дибо- ридов титана - 0,036-0,100 мкм). Исследования тонкой структуры лигатурной полосы показали, что совмещение высокоскоростной кристаллизации расплава и непрерывной деформации затвердевшей части металла формирует тонкую субзеренную структуру. Усредненный размер поперечного сечения субзерен составляет ~ 0,25 мкм.

Таким образом, слитки алюминия, модифицированные лигатурой, полученной по предлагаемому способу, характеризуются резким измельчением зеренного строения. В качестве материала лигатурной ленты могут быть использованы лигатурные сплавы системы Al-Ti-B либо алюминий технической или высокой чистоты. В последних случаях при модифицировании алюминиевого слитка обеспечивается измельчение зерна с одновременным исключением загрязнения его примесями, в том числе интерме- таллидами, вызывающими разрывы тонкой ленты (фольги) при прокатке.

Применение разработанной технологии, включающей расплавление лигатуры, перегрев, выдержку при температуре перегрева и ускоренную кристаллизацию на поверхности водоохлаждаемых валков-кристаллизаторов, в качестве которых использовали валки прокатного стана, позволило реализовать сочетание в едином процессе непрерывной высокоскоростной кристаллизации полосы с ее горячей пластической деформацией. Результаты исследований по модифицированию алюминия лигатурными материалами, полученными по предлагаемой технологии, приведены в табл. 1.4. Анализируя их, можно отметить, что применение лигатурных материалов, полученных по технологии совмещенного литья и обработки давлением, дает не меньший модифицирующий эффект, чем применение известных лигатур, например прутков фирмы «Кавекки». Однако не всегда применение лигатуры Al-Ti-B приводит к решению поставленных производством задач, так как наличие интерметаллидных включений в составе модификатора часто сопровождается их сохранением в готовом полуфабрикате, что снижает его качество.

Использование мелкозернистых слитков позволит уменьшить объем потерь от брака (разрывы, трещины, неоднородности на поверхности фольги) и повысить качество продукции. В связи с этим были предприняты также попытки получить лигатурную ленту из технически чистого алюминия марок А5 и АВЧ (табл. 1.5).

Таблица 1.4

Изменение размеров зерна и количества зерен на 1 см 2 в пробах Алкан-теста после модифицирования алюминия в зависимости от количества вводимой лигатуры из сплава Al-Ti-B

лигатурного

лигатурной

Исходный

алюминия,

Количество титана, % мае.

Усредненный размер зерна в пробе Алкан- теста, мкм

Количество зерен на 1 см 2 , шт.

Степень измельчения зерна после выдержки расплава в течение 5 мин, раз

после выдержки расплава в течение

Известный способ

Пруток диаметром 8 мм фирмы «Кавекки» (Al-3Ti-0,2B)

Предлагаемый способ

Лигатурная

Таблица 1.5

Влияние лигатурной ленты из алюминия на размер зерна в алюминиевом слитке после модифицирования

Количество алюминиевой ленты, % мае. (марка алюминия)

Исходный

слиткового алюминия марки А7, мкм

Средний размер зерна модифицированного алюминия, мкм

Количество зерен на 1 см 2 в модифицированном алюминии, шт.

через 1 мин после ввода ленты

через 7,5 мин после ввода ленты

Результаты исследований показали, что количество зерен в модифицированном алюминии сопоставимо с теми же показателями лигатуры из сплава Al-Ti-B. Это дает основание утверждать, что с применением способов высокоскоростной кристаллизации-деформации возможно получение новых модифицирующих материалов, в том числе и из алюминия.

Использование в качестве модифицирующего материала ленты технологически невыгодно, так как практически все литейные установки снабжены устройствами для подачи лигатуры в виде прутка, поэтому актуальна разработка способов получения модификаторов, которые бы имели технологически выгодную форму и размеры, а также не вносили бы изменения в химический состав сплава слитков, подвергающихся модифицированию.

Таким образом, для внедрения в производство технологий получения деформированных полуфабрикатов с высоким уровнем механических свойств необходимо изготовление новых модифицирующих материалов с применением высокоскоростной кристаллизации алюминиевого сплава в водоохлаждаемых валках, совмещенной с горячей деформацией металла.



error: Контент защищен !!