Передатчик на 433 мгц схема подключения антенны. Радиоуправляемое реле своими руками

В большинстве случаев, когда речь заходит об антеннах, люди представляют себе большие «тарелки», которые установлены за окном или на крыше дома. Однако стоит понимать, что это далеко не так. Дело в том, что размер антенны зависит от того, какую частоту и длину волны она будет ловить. Естественно, если вы хотите ловить сигнал спутника, чтобы транслировать несколько десятков телевизионных каналов, то вам понадобится большая антенна. Но далеко не всегда вам нужен такой сигнал. Именно поэтому и стоит рассмотреть такую вещь, как антенна 433 МГц. Это устройство сильно отличается от тех антенн, которые вы привыкли видеть на окнах и крышах. Оно является очень маленьким и, как уже можно заметить по названию, принимает не самые длинные волны сигнала. Зачем могут пригодиться такие волны? Большинство людей не обращают на них внимания, однако если вы любите наполнять свой дом различными предметами, работающими на дистанционном управлении, то вам определенно понадобится далеко не одна антенна 433 МГц. Если вы научитесь пользоваться их свойствами, то сможете создавать в своей квартире такие вещи, как радиорозетка или даже кормушка для домашнего питомца с дистанционным управлением. Заинтересованы? Тогда читайте статью далее, и вы узнаете, что представляет собой данная антенна, как ее использовать, где купить, а самое главное - как сделать ее собственными руками, если вы не хотите тратиться на покупку.

Что это за антенна?

Итак, в первую очередь необходимо разобраться с тем, что представляет собой антенна 433 МГц. Как вы уже могли понять, это устройство, которое позволяет вам настроить определенный прибор на конкретную частоту, чтобы затем взаимодействовать с ним. Установив антенну в конкретный прибор, вы сможете затем посылать ей сигнал на определенной частоте, чтобы активировать этот прибор и контролировать его. Это очень полезная функция в любом доме, так как вы сможете значительно упростить многие процессы. Однако далеко не каждый сможет проделать нечто подобное - вам нужно хорошо разбираться в данной сфере, чтобы настроить приборы на нужную частоту. Но если вы поставите перед собой цель, то достигнуть ее определенно сможете. Просто вам придется как следует постараться, и начать стоит с изучения именно этой антенны, так как она является одним из самых главных элементов. Вам определенно стоит знать, что антенна 433 МГц бывает трех типов: штыревой, спиральной и вытравленной на печатной плате. Чем они различаются? Какую лучше выбрать? Именно об этом и пойдет речь дальше. Вам предстоит узнать, что представляет собой каждая из этих антенн и понять, какая из них лучше всего подходит для вашей конкретной цели.

Штыревые антенны

Как может оказаться в вашем распоряжении антенна на 433 МГц? Своими руками сделать ее довольно просто, но также вы можете приобрести и готовую, которая обойдется вам немного дороже, но сэкономит немного времени. В любом случае вам сначала нужно определиться с тем, какой именно тип вы хотите получить. И первый тип, о котором пойдет речь, - это штыревая антенна. Ее основным преимуществом является то, что она имеет самые лучше технические характеристики по сравнению с остальными видами. Именно поэтому практически всегда люди делают выбор в ее пользу. Более того, ее сделать своими руками гораздо проще. Так что в целом это наилучшая антенна на 433 МГц, своими руками сделанная или же купленная в магазине. Однако при этом вам не стоит думать, что она идеальна. Если бы ситуация обстояла именно так, то потребности в других видах попросту не было бы. Именно поэтому необходимо отдельно рассмотреть недостатки, которые имеет этот вид антенн, чтобы вы были в курсе всех особенностей, прежде чем принимать решение о покупке.

Недостатки штыревых антенн

Первый недостаток, которым обладают штыревые направленные антенны 433 МГц, - это подверженность влиянию окружающей среды. Проблема заключается в очень сильном отражении и интерференции, которые возникают, если вы пытаетесь использовать антенну в закрытом помещении. Таким образом, она больше подходит для переносных приборов, а не для домашних бытовых приборов, так как в домах из-за малого количества пространства, препятствий в виде мебели и стен сигнал может искажаться, теряться и не доходить до целевого устройства. Так что в первую очередь вам стоит задуматься о том, с какой целью вы собираетесь использовать антенну, а затем уже принимать решение о ее покупке. Однако это не единственный недостаток штыревых антенн, которые изначально могли показаться идеальными. Оказывается, штырь в этой антенне должен быть практически (или полностью) параллельным заземленной пластине, на которой находится сама конструкция. Как вы легко можете понять, в небольших бытовых приборах это очень сложно реализовать. Поэтому вы уже могли сообразить, что штыревые направленные антенны 433 МГц лучше всего подходят для различных портативных приборов более-менее крупных размеров или же тех, на которых антенну можно установить снаружи. В домашних условиях использовать такие антенны не рекомендуется. Но чем же их тогда заменить? Насколько вы помните, существуют еще два вида таких антенн, так что пришло время обратить внимание на них.

Спиральные антенны

Проще всего вам дастся штыревая самодельная антенна на 433 МГц, однако, как вы уже могли заметить выше, она неидеальна. Поэтому стоит обратить внимание на другие виды, например, на спиральную антенну. Чем она отличается от штыревой? Во-первых, она также имеет неплохие технические характеристики, так что в этом плане вы можете использовать с полным спокойствием как первый, так и второй вид. Что же насчет помех? Оказывается, они у спиральной антенны также присутствуют в закрытых помещениях, причем иногда бывают даже более сильными, чем у штыревых. Поэтому остается взглянуть на последний параметр - компактность. Как вы помните, штыревые антенны из-за особенности конструкции должны либо размещаться на корпусе устройства, либо внутри него, но при этом внутри устройства должно быть довольно много свободного места, чего сложно добиться, когда речь идет о небольших бытовых приборах домашнего использования. И по этому параметру спиральная антенна обходит штыревую, потому что она является крайне компактной и позволит вам сделать радиоуправляемым практически каждый прибор в вашем доме. Естественно, самодельная направленная антенна 433 МГц, сделанная таким образом, займет у вас гораздо больше времени, но если вы собираетесь купить антенну, то вам определенно стоит взглянуть на спиральные версии, так как они могут вам пригодиться и очень сильно помочь.

Антенна на плате

Если вам нужна качественная компактная коллинеарная антенна на 433 МГц, то вам определенно стоит обратить внимание на этот вид, то есть на антенны, которые втравлены в плату. Это означает, что данный вид невозможно (или же очень сложно) сделать своими руками, поэтому рассматриваться они будут исключительно как покупные. В чем их преимущества перед описанными выше двумя типами? В первую очередь, они имеют неплохие характеристики. Конечно, не такие впечатляющие, как у предыдущих двух вариантов, однако достаточно хорошие для повседневного использования. Основным их преимуществом является компактность - такие антенны можно разместить абсолютно в любом устройстве. Но, как уже было сказано выше, основным их недостатком является то, что двухдиапазонная антенна 144-433 МГц на плате, сделанная своими руками - это нечто фантастическое. Именно поэтому далее этот вариант рассматриваться не будет по той причине, что оставшаяся часть статьи будет уделена созданию антенны своими руками. Насколько это сложно сделать? Что для этого понадобится? Обо всем этом вы узнаете далее.

Необходимые расчеты

Но если вы решились сделать антенну своими руками, то вам понадобится немало теоретических знаний по этой теме. Дело в том, что любое отклонение в процессе изготовления не позволит вам настроить антенну на прием конкретной частоты. Поэтому все должно выполняться очень точно, так что начинать всегда рекомендуется с расчетов. Сделать их не так сложно, потому что все, что вам нужно рассчитать, - это длина волны. Возможно, вы разбираетесь в физике, поэтому вам будет намного проще, так как вы будете понимать, о чем идет речь. Но даже если физика - это не самая сильная ваша сторона, вам не обязательно нужно понимать, что означает каждая переменная, чтобы провести необходимые расчеты. Итак, как же высчитывается длина антенны 433 МГц? Самое основное уравнение, которое вам нужно знать, - это то, которое позволит вам высчитать необходимую длину антенны. Для этого вам нужно сначала так как длина антенны составляет одну четвертую часть длины волны. Те люди, которые разбираются в физике, могут сами рассчитать необходимую длину волны для конкретной частоты: в данном случае это 433 МГц. Что необходимо сделать? Вам необходимо взять показатель скорости света, который является постоянным, а затем разделить его на необходимую вам частоту. В результате получается, что длина волны для данной частоты составляет около 69 сантиметров, но при такой детальной настройке лучше использовать более точные значения, поэтому стоит сохранить хотя бы два знака после запятой, то есть финальный результат - 69.14 сантиметра. Теперь необходимо разделить полученное значение на четыре, и получится четверть длины волны, то есть 17.3 сантиметра. Такой длины должна быть ваша J-антенна 433 МГц или любой другой вид, который вы захотите использовать. Помните, что независимо от типа, длина антенны должна оставаться неизменной.

Использование полученных данных

Теперь вам необходимо использовать данные, которые вы получили, на практике. Антенна 144-433 МГц может делаться различными способами, однако практическое применение теоретических сведений должно всегда быть одинаковым. О чем идет речь? Во-первых, вам необходимо всегда брать проволоку на несколько сантиметров длиннее, чем желаемая длина антенны. Почему? Дело в том, что в теории все получается довольно точно, однако на практике работать все будет далеко не всегда так, как вы планируете. Поэтому вам стоит всегда иметь некоторый запас на тот случай, если что-то пойдет не так или сигнал не будет ловиться на той частоте, на которой вы хотели. Всегда можно легко откусить проволоку в конкретном месте, когда вы определите необходимую длину. Во-вторых, вам стоит всегда помнить, что длина отсчитывается от того места, где проволока выходит из основания. Таким образом, полученные 17 сантиметров должны отсчитываться от основания вашей антенны. Чаще всего вам придется использовать немного более длинную проволоку, так как вам нужно будет запаять вашу антенну. Антенна 433 МГц штыревая тем лучше будет работать, чем больше вы штырей используете, поэтому вам стоит позаботиться о том, чтобы каждый из них был одинаковой длины.

Подготовка материалов

Итак, с теорией покончено, пришло время заняться практикой. А для этого вам нужно будет взять все, что вам понадобится для создания собственной антенны. В первую очередь, это проволока или прутья, которые будут составлять основную приемную часть вашей антенны. Во-вторых, вам понадобится основа для вашей антенны. Желательно, чтобы в ней было несколько отверстий, которые вы сможете использовать для крепления штырей. Если эти отверстий не будет, вам придется или просверливать дыры, или же паять прямо к прямому металлу, что не очень удобно и не позволит вам правильно подсчитать длину заранее. Поэтому используйте основание с готовыми отверстиями. Естественно, вам понадобятся и другие вещи, такие как, например, паяльник, однако об этом известно каждому, поэтому нет смысла перечислять все такие предметы.

Выполнение работ

В первую очередь вам нужно подготовить материал для дальнейшей работы. Для этого все штыри вам нужно зачистить, залудить и обработать флюсом. После этого вам нужно обрезать штыри до необходимой длины, но при этом не забывайте о том, чтобы оставить немного длины, чтобы затем подкорректировать готовый результат. Затем вам нужно браться за паяние - каждый из штырей необходимо запаять с обратной стороны антенны, а затем взять еще один, который будет крепиться к антенне. Его длина уже не играет роли, так как он будет исполнять функцию держателя и не будет отвечать за принятие сигнала. Его также нужно запаять, после чего вы уже можете полюбоваться на результат вашей работы.

Финальные шаги

Что ж, ваша антенна уже готова к использованию. Вам осталось лишь сделать финальные шаги. Обрежьте лишнюю длину штырей, чтобы сигнал принимался идеально. Если у вас есть термоусадка - используйте ее. И помните - это лишь один из примеров самодельной антенны. Вы можете сделать также и спиральную антенну, а штыревая антенна в вашем исполнении может выглядеть совершенно иначе. Однако расчеты для получения длины антенны актуальны в любом случае, да и шаги создания антенны собственными руками также будут отличаться лишь в деталях.

Принципиальная схема системы радиоуправления, построенной на основе телефона-трубки, рабочая частота - 433МГц. В конце 90-х были очень популярны телефоны-трубки, да и сейчас они повсюду продаются. Но, сотовая связь болееудобна и сейчас повсеместно вытесняет стационарную.

Купленные когда-то телефонные аппараты становятся ненужными. Если так образовался ненужный, но исправный телефон-трубка с переключателем «тон/пульс», на его основе можно сделать систему дистанционного управления.

Чтобы телефон-трубка стал генератором DTMF-кода нужно его переключить в положение «тон» и подать на него питание, достаточное для нормальной работы его схемы тонального набора. Затем, с него подать сигнал на вход передатчика.

Принципиальная схема

На рисунке 1 показана схема передатчика такой системы радиоуправления. Напряжение на телефон-трубку ТА подается от источника постоянного тока напряжением 9V через резистор R1, который является в данном случае нагрузкой схемы тонального набора ТА. Когда нажимаем кнопки на ТА на резисторе R1 присутствует переменная составляющая сигнала DTMF.

С резистора R1 НЧ сигнал поступает на модулятор передатчика. Передатчик состоит из двух каскадов. На транзисторе VТ1 выполнен задающий генератор. Его частота стабилизирована резонатором на ПАВ на 433,92МГц. На этой частоте и работает передатчик.

Рис. 1. Принципиальная схема передатчика на 433МГц к телефонной трубке-номеронаберателю.

Усилитель мощности выполнен на транзисторе VТ2. Амплитудная модуляция осуществляется в этом каскаде, путем смешения сигнала ЗЧ с напряжением смещения, поступающим на базу транзистора. НЧ-сигнал DTMF кода с резистора R1 поступает в цепь создания напряжения на базе VТ2, состоящую из резисторов R7, R3 и R5.

Конденсатор С3 совместно с резисторами образует фильтр, разделяющий РЧ и НЧ. Нагружен усилитель мощности на антенну через П-образный фильтр C7-L3-C8.

Чтобы радиочастота с передатчика не проникала в схему телефонного аппарата питание на него подается через дроссель L4, заграждающий путь РЧ сигналу. Приемный тракт (рисунок 2) сделан по сверхрегенеративной схеме. На транзисторе VТ1 выполнен сверхрегенеративный детектор.

УРЧ нет, сигнал от антенны поступает через катушку связи L1. Принятый и продетектированный сигнал выделяется на R9, входящем в состав делителя напряжения R6-R9, создающего среднюю точку на прямом входе ОУ А1.

Основное усиление НЧ происходит в операционном усилителе А1. Его коэффициент усиления зависит от сопротивления R7 (при налаживании им можно корректировать усиление до оптимального). Затем через резистор R10, которым регулируется уровень продетектирован-ного сигнала, DTMF - код поступает на вход микросхемы А2 типа КР1008ВЖ18.

Схема декодера DTMF-кода на микросхеме А2 почти не отличается от типовой, разве что, используется только три разряда выходного регистра. Полученный в результате декодирования трехразрядный двоичный код поступает на десятичный дешифратор на мультиплексоре К561КП2. И далее, - на выход. Выходы обозначены соответственно номерам, которыми подписаны кнопки.

Рис. 2. Схема приемника радиоуправления с частотой 433МГц и с дешифратором на К1008ВЖ18.

Чувствительность входа К1008ВЖ18 зависит от сопротивления R12 (вернее, от соотношения R12/R13).

При приеме команды логическая единица возникает на соответствующем выходе.

В отсутствие команды выходы находятся в высокоомном состоянии, кроме выхода, соответствующего последней полученной команде, - на нем будет логический ноль. Это необходимо учесть при выполнении схемы подлежащей управлению. В случае необходимости все выходы можно подтянуть к нулю постоянными резисторами.

Детали

Антенна представляет собой проволочную спицу длиной 160 мм. Катушки L1 и L2 передатчика (рис. 1) одинаковые, они имеют по 5 витков ПЭВ-2 0,31, бескаркасные, внутренним диаметром 3 мм, намотаны виток к витку. Катушка L3 - такая же, но намотана с шагом в 1 мм.

Катушка L4 - готовый дроссель на 100 мкГн или больше.

Катушки приемника (рис.2) L1 и L2 при монтаже расположены вплотную друг к другу, на общей оси, так как будто бы одна катушка является продолжением другой. L1 - 2,5 витка, L2 - 10 витков, ПЭВ 0,67, внутренний диаметр намотки 3 мм, каркаса нет. Катушка L3 - 30 витков провода ПЭВ 0,12, она намотана на постоянном резисторе МЛТ-0,5 сопротивлением не менее 1М.

Шатров С. И. РК-2015-10.

Литература: С. Петрусь. Радиоудлинитель ИК ПДУ спутникового тюнера, Р-6-200.

Эттот приемник разрабатывался как "конструкция выходного дня" и предназначен для
мониторинга частоты 433мгц, оценки обстановки в эфире, прослушивания сигналов AM/WFM/PWM передатчиков, а так же при работе с направленной антенной для пеленгации и поиска радиомаячков и радиомикрофонов. Приемник выполнен по неодноратно испытанной в аппаратуре радиоуправления схеме сверхрегенератора с транзистором работающем в барьерном режиме. В УНЧ используется широко распространенная микросхема ОУ LM358, один из ее усилителей работает как предварительный с регулировкой усиления а второй- как повторитель для согласования с низкоомными головными телефонами с сопротивлением катушек 20-50ом. В отличии от аналогичных приемников радиоуправления частота среза ФНЧ после детектора понижена до 3-4кгц для снижения шумов в отсутствие сигнала, а так же увеличена емкость кондесатора, шунтирующего вход антенны для снижения влияния резонансной направленной антенны "волновой канал" на настройку контура детектора. Чувствительность приемника ориентировочно составляет единицы микровольт, полоса пропускания порядка 1мгц. Сигнал передатчика 423мгц мощностью 80мвт с расстояния >2м принимается на уровне, сравнимом с уровнем шумов (при настройке приемника на 433мгц). Частота приема определяется настройкой катушки L2 и может быть изменена в больших пределах.

Принципиальная схема приемника
Светодиод желтого свечения с прямым напряжением около 2в служит для стабилизации режима сверхрегенератора а так же индикатором включения. Диапазон напряжения питания 3.7-0в, потребляемый ток при питании от 9в в отсутствие сигнала составляет 4ма, при приеме сигнала и полной громкости- 12ма. Регулировка приемника сводится к настройке (путем сжатия- растяжения витков катушки L2) контура сверхрегенератора на необходимую частоту.


Фото собранной платы приемника.



Приемник с 3-х элементной антенной "волновой канал"

Первоначально планировалось подключение напрвленной антенны через полосковые линии связи на 2-х стороннем фольгированном стеклотекстолите но из-за неустойчивой работы приемника при прикосновении к элементам антенны соединение активного вибратора со входом приемника пришлось выполнить на 2-х проводной линии (из проводов плоского кабеля) длиной 160мм.

Подключение сделано на винтах поскольку установочные размеры BNC разьема превышают размер платы приемника.


Это фото приемника с обычной штыревой антенной 17см.

Рисунок печатной платы.
Монтаж выполнен на 2-х стороннем фольгированном стеклотекстолите толщиной 1мм. Контакты, помеченные белым цветом соединяются с фольгой на нижней стороне платы (землей) короткими отрезками провода. Внимание! плату для ЛУТ печатать ЗЕРКАЛЬНО!

Кто из начинающих радиолюбителей не хотел сделать какое-нибудь устройство с управлением по радиоканалу? Наверняка многие.

Давайте рассмотрим, как на базе готового радиомодуля собрать несложное радиоуправляемое реле.

В качестве приёмо-передатчика я использовал готовый модуль. Купил его на AliExpress вот у этого продавца .

Комплект состоит из пульта-передатчика на 4 команды (брелок), а также платы приёмника. Плата приёмника выполнена в виде отдельной печатной платы и не имеет исполнительных цепей. Их необходимо собрать самому.

Вот внешний вид.

Брелок добротный, приятный на ощупь, поставляется с батарейкой 12V (23А).

В брелоке встроена плата, на которой собрана довольно примитивная схема пульта-передатчика на транзисторах и шифраторе SC2262 (полный аналог PT2262). Смутило то, что на микросхеме в качестве маркировки указано SC2264, хотя из даташита известно, что дешифратор для PT2262 - это PT2272. Тут же на корпусе микросхемы чуть ниже основной маркировки указано SCT2262. Вот и думай, что к чему . Что ж, для Китая это не удивительно.

Передатчик работает в режиме амплитудной модуляции (АМ) на частоте 315 МГц.

Приёмник собран на небольшой печатной плате. Радиоприёмный тракт выполнен на двух SMD-транзисторах с маркировкой R25 - биполярных N-P-N транзисторах 2SC3356. На операционном усилителе LM358 реализован компаратор, а к его выходу подключен дешифратор SC2272-M4 (она же PT2272-M4).

Как работает устройство?

Суть работы сего устройства такова. При нажатии на одну из кнопок пульта A, B, C, D передаётся сигнал. Приёмник усиливает сигнал, а на выходах D0, D1, D2, D3 платы приёмника появляется напряжение 5 вольт. Вся загвоздка в том, что 5 вольт на выходе будет только пока нажата соответствующая кнопка на брелоке. Стоит отпустить кнопку на пульте - напряжение на выходе приёмника пропадёт. Упс. В таком случае не получиться сделать радиоуправляемое реле, которое бы срабатывало при кратковременном нажатии кнопки на брелоке и отключалось при повторном.

Связано это с тем, что существуют разные модификации микросхемы PT2272 (китайский аналог - SC2272). А в такие модули почему то ставят именно PT2272-M4, у которых нет фиксации напряжения на выходе.

А какие же бывают разновидности микросхемы PT2272?

    PT2272-M4 - 4 канала без фиксации. На выходе соответствующего канала +5V появляется только тогда, пока нажата кнопка на брелоке. Именно такая микросхема используется в купленном мной модуле.

    PT2272-L4 - 4 зависимых канала с фиксацией. Если включается один выход, то другие отключаются. Не совсем удобно, если необходимо независимо управлять разными реле.

    PT2272-T4 - 4 независимых канала с фиксацией. Самый лучший вариант для управления несколькими реле. Поскольку они независимы, то каждое может выполнять свою функцию независимо от работы других.

Что же сделать, чтобы реле срабатывало так, как нам нужно?

Тут есть несколько решений:

    Выдираем микросхему SC2272-M4 и вместо неё ставим такую же, но с индексом T4 (SC2272-T4). Теперь выходы будут работать независимо и с фиксацией. То есть можно будет включить/выключить любое из 4 реле. Реле будут включаться при нажатии кнопки, и выключаться при повторном нажатии на соответствующую кнопку.

    Дополняем схему триггером на К561ТМ2. Так как микросхема К561ТМ2 состоит из двух триггеров, то понадобиться 2 микросхемы. Тогда будет возможность управлять четырьмя реле.

    Используем микроконтроллер. Требует навыков программирования.

На радиорынке микросхему PT2272-T4 я не нашёл, а заказывать с Ali целую партию одинаковых микрух счёл нецелесообразным. Поэтому для сборки радиоуправляемого реле решил использовать второй вариант с триггером на К561ТМ2.

Схема достаточно проста (картинка кликабельна).

Вот реализация на макетной плате.

На макетке я быстренько собрал исполнительную цепь только для одного канала управления. Если взглянуть на схему, то можно увидеть, что они одинаковые. В качестве нагрузки на контакты реле нацепил красный светодиод через резистор в 1 кОм.

Наверняка заметили, что в макетку я воткнул готовый блок с реле. Его я вытащил из охранной сигнализации. Блок оказался очень удобным, так как на плате уже было распаяно само реле, штыревой разъём и защитный диод (это VD1-VD4 на схеме).

Пояснения к схеме.

Приёмный модуль.

Вывод VT - это вывод, на котором появляется напряжение 5 вольт, если был принят сигнал от передатчика. Я к нему подключил светодиод через сопротивление 300 Ом. Номинал резистора может быть от 270 до 560 Ом. Так указано в даташите на микросхему.

При нажатии на любую кнопку брелока светодиод, который мы подключили к выводу VT приёмника, будет кратковременно вспыхивать - это свидетельствует о приёме сигнала.

Выводы D0, D1, D2, D3; - это выходы микросхемы дешифратора PT2272-M4. С них мы будем снимать принятый сигнал. На этих выходах появляется напряжение +5V, если был принят сигнал от пульта управления (брелока). Именно к этим выводам подключаются исполнительные цепи. Кнопки A, B, C, D на пульте (брелоке) соответствуют выходам D0, D1, D2, D3.

На схеме приёмный модуль и триггеры запитываются напряжением +5V от интегрального стабилизатора 78L05. Цоколёвка стабилизатора 78L05 показана на рисунке.

Буферная цепь на D-триггере.

На микросхеме К561ТМ2 собран делитель частоты на два. На вход С приходят импульсы с приёмника, и D-триггер переключается в другое состояние до тех пор, пока на вход С не придёт второй импульс с приёмника. Получается очень удобно. Поскольку реле управляется с выхода триггера, то и оно будет включено или выключено до тех пор, пока не придёт следующий импульс.

Вместо микросхемы К561ТМ2 можно использовать К176ТМ2, К564ТМ2, 1КТМ2 (в металле с позолотой) или импортные аналоги CD4013, HEF4013, HСF4013. Каждая из этих микросхем состоит из двух D-триггеров. Их цоколёвка одинаковая, но вот корпуса могут быть разные, как, например, у 1КТМ2.

Исполнительная цепь.

В качестве силового ключа используется биполярный транзистор VT1. Я использовал КТ817, но подойдёт КТ815. Он управляет электромагнитным реле K1 на 12V. К контактам электромагнитного реле K1.1 можно подключать любую нагрузку. Это может быть лампа накаливания, светодиодная лента, электродвигатель, электромагнит замка и др.

Цоколёвка транзистора КТ817, КТ815.

Следует учесть, что мощность подключаемой к контактам реле нагрузки должна быть не меньше той мощности, на которую рассчитаны контакты самого реле.

Диоды VD1-VD4 служат защитой транзисторов VT1-VT4 от напряжения самоиндукции. В момент отключения реле в его обмотке возникает напряжение, которое противоположено по знаку тому, которое поступало на обмотку реле от транзистора. В результате транзистор может выйти из строя. А диоды по отношению к напряжению самоиндукции оказываются открытыми и "гасят" его. Тем самым они берегут наши транзисторы. Не забывайте про них!

Если хотите дополнить исполнительную цепь индикатором включения реле, то добавляем в схему светодиод и резистор на 1 кОм. Вот схема.

Теперь, когда на обмотку реле будет подано напряжение, включится светодиод HL1. Это будет указывать на то, что реле включено.

Вместо отдельных транзисторов в схеме можно использовать всего лишь одну микросхему с минимумом обвязки. Подойдёт микросхема ULN2003A . Отечественный аналог К1109КТ22 .

Это микросхема содержит 7 транзисторов Дарлингтона. Удобно то, что выводы входов и выходов расположены друг против друга, что облегчает разводку платы, да и обычное макетирование на беспаечной макетной плате.

Работает довольно просто. Подаём на вход IN1 напряжение +5V, составной транзистор открывается, и вывод OUT1 подключается к минусу питания. Тем самым на нагрузку подаётся напряжение питания. Нагрузкой может быть электромагнитное реле , электромотор, цепь из светодиодов, электромагнит и пр.

В даташите производитель микросхемы ULN2003A хвастается, что ток нагрузки каждого выхода может достигать 500 мА (0,5А), что собственно, не мало. Тут многие из нас умножат 0,5А на 7 выходов и получат суммарный ток в 3,5 ампера. Да, здорово! НО . Если микросхема и сможет прокачать через себя такой существенный ток, то на ней можно будет жарить шашлык...

На самом деле, если задействовать все выходы и пустить в нагрузку ток, то выжать без вреда для микросхемы можно будет около ~80 - 100мА на канал. Опс. Да, чудес не бывает.

Вот схема подключения ULN2003A к выходам триггера К561ТМ2.

Есть ещё одна широко распространённая микросхема, которую можно использовать - это ULN2803A.

У неё уже 8 входов/выходов. Я её выдрал с платы убитого промышленного контроллера и решил поэкспериментировать.

Схема подключения ULN2803A. Для индикации включения реле можно дополнить схему цепью из светодиода HL1 и резистора R1.

Вот так это выглядит на макетке.

Кстати, микросхемы ULN2003, ULN2803 допускают объединение выходов для увеличения максимально-допустимого выходного тока. Это может потребоваться, если нагрузка потребляет более 500 мА. Соответствующие входы также объединяются.

Вместо электромагнитного реле в схеме можно применить твёрдотельное реле (SSR - S olid S tate R elay). В таком случае, схему можно существенно упростить. Например, если применить твёрдотельное реле CPC1035N, то отпадает необходимость в питании устройства от 12 вольт. Достаточно будет 5-вольтового блока питания для питания всей схемы. Также отпадает необходимость в интегральном стабилизаторе напряжения DA1 (78L05) и конденсаторах С3, С4.

Вот так твёрдотельное реле CPC1035N подключается к триггеру на К561ТМ2.

Несмотря на свою миниатюрность, твёрдотельное реле CPC1035N может коммутировать переменное напряжение от 0 до 350 V, при токе нагрузки до 100 mA. Иногда этого достаточно, чтобы управлять маломощной нагрузкой.

Можно применить и отечественные твёрдотельные реле, я, например, экспериментировал с К293КП17Р.

Выдрал его с платы охранной сигнализации. В данной релюшке, кроме самого твёрдотельного реле, есть ещё и транзисторная оптопара. Её я не использовал - оставил выводы свободными. Вот схема подключения.

Возможности К293КП17Р весьма неплохие. Может коммутировать постоянное напряжение отрицательной и положительной полярности в пределах -230...230 V при токе нагрузки до 100 mA. А вот с переменным напряжением работать не может. То есть постоянное напряжение к выводам 8 - 9 можно подводить как угодно, не заботясь о полярности. Но вот переменное напряжение подводить не стоит.

Дальность работы.

Чтобы приёмный модуль надёжно принимал сигналы от пульта-передатчика, к контакту ANT на плате нужно припаять антенну. Желательно, чтобы длина антенны была равна четверть длины волны передатчика (то бишь λ/4). Так как передатчик брелока работает на частоте в 315 МГц, то по формуле длина антенны составит ~24 см. Вот расчёт.

Где f - частота (в Гц), следовательно 315 000 000 Гц (315 Мегагерц);

Скорость света С - 300 000 000 метров в секунду (м/c);

λ - длина волны в метрах (м).

Чтобы узнать, на какой частоте работает пульт-передатчик, вскрываем его и ищем на печатной плате фильтр на ПАВ (Поверхностно-акустических волнах). На нём обычно указана частота. В моём случае это 315 МГц.

При необходимости антенну можно и не припаивать, но дальность действия устройства сократится.

В качестве антенны можно применить телескопическую антенну от какого-нибудь неисправного радиоприёмника, магнитолы. Будет очень даже круто .

Дальность, при которой приёмник устойчиво принимает сигнал от брелока небольшое. Опытным путём я определил расстояние в 15 - 20 метров. С преградами это расстояние уменьшается, а вот при прямой видимости дальность будет в пределах 30 метров. Ожидать чего-то большего от такого простого устройства глупо, схемотехника его весьма проста.

Шифрование или "привязка" пульта к приёмнику.

Изначально, брелок и приёмный модуль незашифрованы. Иногда говорят, что не "привязаны".

Если купить и использовать два комплекта радиомодулей, то приёмник будет срабатывать от разных брелоков. Аналогично будет и с приёмным модулем. Два приёмных модуля будут срабатывать от одного брелока. Чтобы этого не происходило, применяется фиксированная кодировка. Если приглядеться, то на плате брелока и на плате приёмника есть места, где можно напаять перемычки.

Выводы от 1 до 8 у пары микросхем кодеров/декодеров (PT2262/PT2272 ) служат для установки кода. Если приглядется, то на плате пульта управления рядом с выводами 1 - 8 микросхемы есть лужёные полоски, а рядом с ними буквы H и L . Буква H - означает High ("высокий"), то есть высокий уровень.

Если паяльником накинуть перемычку от вывода микросхемы к полоске с пометкой H , то мы тем самым подадим высокий уровень напряжения в 5V на микросхему.

Буква L соответственно означает Low ("низкий"), то есть, накидывая перемычку c вывода микросхемы на полоску с буквой L, мы устанавливаем низкий уровень в 0 вольт на выводе микросхемы.

На печатной плате не указан нейтральный уровень - N . Это когда вывод микросхемы как бы "висит" в воздухе и ни к чему не подключен.

Таким образом, фиксированный код задаётся 3 уровнями (H, L, N). При использовании 8 выводов для установки кода получается 3 8 = 6561 возможных комбинаций! Если учесть, что четыре кнопки у пульта также участвуют в формировании кода, то возможных комбинаций становится ещё больше. В результате случайное срабатывание приёмника от чужого пульта с иной кодировкой становится маловероятным.

На плате приёмника пометок в виде букв L и H нет, но тут нет ничего сложного, так как полоска L подключена к минусовому проводу на плате. Как правило, минусовой или общий (GND) провод выполняется в виде обширного полигона и занимает на печатной плате большую площадь.

Полоска H подключается к цепям с напряжением в 5 вольт. Думаю понятно.

Я установил перемычки следующим образом. Теперь мой приёмник от другого пульта уже не сработает, он узнает только "свой" брелок. Естественно, распайка должна быть одинаковой как у приёмника, так и у пульта-передатчика.

Кстати, думаю, вы уже сообразили, что если потребуется управлять несколькими приёмниками от одного пульта, то просто распаиваем на них такую же комбинацию кодировки, как на пульте.

Стоит отметить, что фиксированный код не сложно взломать, поэтому не рекомендую использовать данные приёмо-передающие модули в устройствах доступа.

На этом уроке мы решим задачу по передаче радиосигнала между двумя контроллерами Ардуино с помощью популярного приемопередатчика с частотой 433МГц. На самом деле, устройство по передаче данных состоит из двух модулей: приемника и передатчика. Данные можно передавать только в одном направлении. Это важно понимать при использовании этих модулей. Например, можно сделать дистанционное управление любым электронным устройством, будь то мобильный робот или, например, телевизор. В этом случае данные будут передаваться от пульта управления к устройству. Другой вариант — передача сигналов с беспроводных датчиков на систему сбора данных. Здесь уже маршрут меняется, теперь передатчик стоит на стороне датчика, а приемник на стороне системы сбора. Модули могут иметь разные названия: MX-05V, XD-RF-5V, XY-FST, XY-MK-5V, и т.п., но все они имеют примерно одинаковый внешний вид и нумерацию контактов. Также, распространены две частоты радиомодулей: 433 МГц и 315 МГц.

1. Подключение

Передатчик имеет всего три вывода: Gnd, Vcc и Data.
Подключаем их к первой плате Ардуино по схеме: Собираем оба устройства на макетной плате и приступаем к написанию программ.

2. Программа для передатчика

Для работы с радиомодулями воспользуемся библиотекой RCSwitch . Напишем программу, которая будет каждую секунду по-очереди отправлять два разных сообщения. #include RCSwitch mySwitch = RCSwitch(); void setup() { mySwitch.enableTransmit(2); } void loop() { mySwitch.send(B0100, 4); delay(1000); mySwitch.send(B1000, 4); delay(1000); } Разберем программу. Первое что мы сделали — объявили объект для работы с передатчиком и назвали его mySwitch. RCSwitch mySwitch = RCSwitch(); Затем, внутри стандартной функции setup включили передатчик и указали вывод, к которому он подключен: mySwitch.enableTransmit(2); Наконец, в основном цикле программы loop отправляем сначала одно сообщение, а затем и второе с помощью функции send : mySwitch.send(B1000, 4); Функция send имеет два аргумента. Первый — это отправляемое сообщение, которое будет отправляться в эфир в виде пачки импульсов. Второй аргумент — это размер отправляемой пачки. В нашей программе мы указали сообщения в формате двоичного числа. На это указывает английская буква «B» в начале кода B1000. В десятеричном представлении это число превратится в восьмерку. Так что мы могли вызвать функцию send так: mySwitch.send(8, 4); Также send умеет принимать двоичные строки: mySwitch.send("1000", 4);

3. Программа для приемника

Теперь напишем программу для приемника. Для демонстрации факта передачи мы будем зажигать светодиод, подключенный к выводу №3 на плате Ардуино. Если приемник поймал код B1000 — включим светодиод, а если B0100 — выключим. #include RCSwitch mySwitch = RCSwitch(); void setup() { pinMode(3, OUTPUT); mySwitch.enableReceive(0); } void loop() { if(mySwitch.available()){ int value = mySwitch.getReceivedValue(); if(value == B1000) digitalWrite(3, HIGH); else if(value == B0100) digitalWrite(3, LOW); mySwitch.resetAvailable(); } } Функция available возвращает истину, если передатчик принял хоть какие-то данные: mySwitch.available() Функция getReceivedValue извлекает из потока данных одну пачку и декодирует её в число. В программе мы присваиваем полученное число переменной value : int value = mySwitch.getReceivedValue();

Задания

Теперь можно попробовать потренироваться и сделать разные полезные устройства. Вот несколько идей.
  1. Пульт для светильника. На стороне приемника , включенный в цепь питания светильника (осторожно, 220 Вольт!). На стороне передатчика: . Написать программы для приемника и передатчика, которые по нажатию кнопки будут включать удаленное реле. При повторном нажатии кнопки реле будет выключаться.
  2. Уличный термометр с радиоканалом. На стороне передатчика разместить . Предусмотреть автономное питание от батареек. На стороне приемника: . Написать программы для приемника и передатчика, которые позволят выводить показания температуры с удаленного датчика на дисплее.

Заключение

Итак, теперь мы знаем простой и недорогой способ передавать данные на расстоянии. К сожалению, скорость передачи и дистанция в таких радиомодулях весьма ограничены, так что мы не сможем полноценно управлять, например квадрокоптером. Однако, сделать радиопульт для управления простым бытовым прибором: светильником, вентилятором или телевизором, нам под силу. На основе приемопередатчиков с частотой 433 МГц и 315 МГц работает большинство радиоканальных пультов управления. Имея Ардуино и приемник, мы можем декодировать сигналы управления и повторить их. Подробнее о том, как это сделать мы напишем в одном из следующих уроков!


error: Контент защищен !!